■ある無限級数(その165)
B=1/1−1/7+1/9−1/15+1/17−1/23+・・・
=π/8・tan(3π/8)
C=1/3−1/5+1/11−1/13+1/19−1/21+・・・
=π/8・tan(π/8)
A=B−C=π/4と鳴子とを確かめておきたい.
===================================
tan(3π/8)=tan(π/4+π/8)
={tan(π/4)−tan(π/8)}/{1+tan(π/4)tan(π/8)}
={1−tan(π/8)}/{1+tan(π/8)}
としてもよいが,
tan(π/8)=√2−1
tan(3π/8)=√2+1
より
B−C=π/8{tan(3π/8)−tan(π/8)}=π/4
===================================