■ある無限級数(その165)

B=1/1−1/7+1/9−1/15+1/17−1/23+・・・

=π/8・tan(3π/8)

C=1/3−1/5+1/11−1/13+1/19−1/21+・・・

=π/8・tan(π/8)

A=B−C=π/4と鳴子とを確かめておきたい.

===================================

tan(3π/8)=tan(π/4+π/8)

={tan(π/4)−tan(π/8)}/{1+tan(π/4)tan(π/8)}

={1−tan(π/8)}/{1+tan(π/8)}

としてもよいが,

tan(π/8)=√2−1

tan(3π/8)=√2+1

より

B−C=π/8{tan(3π/8)−tan(π/8)}=π/4

===================================