■サマーヴィルの等面四面体(その766)
方針を変更.
[1]
(x1,y1)=(1,0)にn−1個の頂点,
(x2,±y2)=(−1/n,±√(1−1/n^2))にそれぞれ頂点が1個ずつ,
[2]
(x2,y2)=(−1/n,√(1−1/n^2))にn−1個の頂点,
(x1,y1)=(1,0),(x2,−y2)=(−1/n,−√(1−1/n^2))にそれぞれ頂点が1個ずつ
でなく,
[3]
(x1,y1)=(1,0)にn−2個の頂点,
(x2,±y2)=(−1/n,±√(1−1/n^2))にそれぞれ頂点が2個,1個の場合を扱ったほうが良さそうだ.
[x2+s]=[r11,r12,r13,r14,r15][v6]
[ −y2] [r21,r22,r23,r24,r25]
を比較した場合,・・・
===================================
F4:x2は−1/3×1倍,y2は√(8/9)×2倍
F5:x2は−1/3×1/5倍,y2は√(8/9)×2倍
F6:x2は−1/3×1/5倍,y2は√(8/9)×2倍
F7:x2は−1/3×1/5倍,y2は√(8/9)×2倍
G5:x2は−1/4×6倍,y2は√(15/16)×2倍
G6:x2は−1/4×0倍,y2は√(15/16)×2倍
G7:x2は−1/4×0倍,y2は√(15/16)×2倍
H6:x2は−1/5×7,√(24/25)×2倍
H6:x2は−1/5×−1/5,√(24/25)×2倍
I7:x2は−1/6×89/5,y2は√(35/36)×[1]×2倍
===================================