■サマーヴィルの等面四面体(その766)

 方針を変更.

[1]

 (x1,y1)=(1,0)にn−1個の頂点,

 (x2,±y2)=(−1/n,±√(1−1/n^2))にそれぞれ頂点が1個ずつ,

[2]

 (x2,y2)=(−1/n,√(1−1/n^2))にn−1個の頂点,

 (x1,y1)=(1,0),(x2,−y2)=(−1/n,−√(1−1/n^2))にそれぞれ頂点が1個ずつ

でなく,

[3]

 (x1,y1)=(1,0)にn−2個の頂点,

 (x2,±y2)=(−1/n,±√(1−1/n^2))にそれぞれ頂点が2個,1個の場合を扱ったほうが良さそうだ.

 [x2+s]=[r11,r12,r13,r14,r15][v6]

 [ −y2] [r21,r22,r23,r24,r25]

を比較した場合,・・・

===================================

F4:x2は−1/3×1倍,y2は√(8/9)×2倍

F5:x2は−1/3×1/5倍,y2は√(8/9)×2倍

F6:x2は−1/3×1/5倍,y2は√(8/9)×2倍

F7:x2は−1/3×1/5倍,y2は√(8/9)×2倍

G5:x2は−1/4×6倍,y2は√(15/16)×2倍

G6:x2は−1/4×0倍,y2は√(15/16)×2倍

G7:x2は−1/4×0倍,y2は√(15/16)×2倍

H6:x2は−1/5×7,√(24/25)×2倍

H6:x2は−1/5×−1/5,√(24/25)×2倍

I7:x2は−1/6×89/5,y2は√(35/36)×[1]×2倍

===================================