■ある無限級数(その148)

[4]5の倍数の項のない交代級数

{1/1−1/2+1/3−1/4+1/6−1/7+1/8−1/9}+{1/6−1/7+1/8−1/9+1/11−1/12+1/13−1/14}}+・・・

=Σ{1/(5k−4)−1/(5k−3)+1/(5k−2)−1/(5k−1)+1/(5k+1)−1/(5k+2)+1/(5k+3)−1/(5k+4)}

=+1/4−π/5/tan(4π/5)

−1/3+π/5/tan(3π/5)

+1/2−(π/5)/tan(2π/5)

−1+π/5/tan(π/5)

でなく,

{1/1−1/2+1/3−1/4}+{1/6−1/7+1/8−1/9}+{1/11−1/12+1/13−1/14}+・・・

=Σ{1/(5k−4)−1/(5k−3)+1/(5k−2)}

をもとめたいのであるが・・・

===================================

 a=qi/pとおいた場合は

Σ1/(pk−q)−Σ1/(pk+q)

=1/q−(π/p)/tan(qπ/p)

となる.

[1]p=5,q=1

Σ1/(5k−1)−Σ1/(5k+1)

=1/1−(π/5)/tan(π/5)

=1/4−1/6+1/9−1/11+1/14−1/16+・・・

[2]p=5,q=2

Σ1/(5k−2)−Σ1/(5k+2)

=1/2−(π/5)/tan(2π/5)

=1/3−1/7+1/8−1/12+1/13−1/17+・・・

[3] [1]−[2]

−1/3+1/4−1/6+1/7−1/8+1/9−1/11+1/12+−1/13+1/14−1/16+1/17−・・・

=1/2−(π/5)/tan(π/5)+(π/5)/tan(2π/5)

===================================

[雑感](その145)ではまとめすぎたため,おもしろい形にならなかったが,単純に差をとればよいようである.

===================================