■ある無限級数(その145)

 (その140)〜(その144)をまとめておきたい.

[1]2の倍数の項のない交代級数

{1/1−1/3}+{1/3−1/5}+{1/5−1/7}+・・・

=Σ{1/(2k−1)−1/(2k+1)}=1

[2]3の倍数の項のない交代級数

{1/1−1/2+1/4−1/5}+{1/4−1/5+1/7−1/8}}+・・・

=Σ{1/(3k−2)−1/(3k−1)+1/(3k+1)−1/(3k+2)}

=1/2−(π/3)/tan(2π/3)

−1+(π/3)/tan(π/3)

[3]4の倍数の項のない交代級数

{1/1−1/2+1/3−1/5+1/6−1/7}+{1/5−1/6+1/7−1/9+1/10−1/12}}+・・・

=Σ{1/(4k−3)−1/(4k−2)+1/(4k−1)−1/(4k+1)+1/(4k+2)−1/(4k+3)}

=1/3−π/4/tan(3π/4)

−1/2

+1−π/4/tan(π/4)

[4]5の倍数の項のない交代級数

{1/1−1/2+1/3−1/4+1/6−1/7+1/8−1/9}+{1/6−1/7+1/8−1/9+1/11−1/12+1/13−1/14}}+・・・

=Σ{1/(5k−4)−1/(5k−3)+1/(5k−2)−1/(5k−1)+1/(5k+1)−1/(5k+2)+1/(5k+3)−1/(5k+4)}

=+1/4−π/5/tan(4π/5)

−1/3+π/5/tan(3π/5)

+1/2−(π/5)/tan(2π/5)

−1+π/5/tan(π/5)

[5]6の倍数の項のない交代級数

{1/1−1/2+1/3−1/4+1/5−1/7+1/8−1/9+1/10−1/12}+{1/7−1/8+1/9−1/10+1/11−1/13+1/14−1/15+1/16−1/17}}+・・・

=Σ{1/(6k−5)−1/(6k−4)+1/(6k−3)−1/(6k−2)+1/(6k−1)−1/(6k+1)+1/(6k+2)−1/(6k+3)+1/(6k+4)−1/(6k+5)}

=+1/5−π/6/tan(5π/6)

−1/4+π/6/tan(4π/6)

+1/3−(π/5)/tan(3π/6)

−1/2+π/6/tan(2π/6)

+1−π/6/tan(2π/6)

===================================

[雑感]これではおもしろい形になっていない.

===================================