■ある無限級数(その144)
(その135)のやり直し.
1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+
a^2) +・・・
=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)
=-1/(2a^2) + (π/(2a))/tanh(aπ)
=-1/(2a^2) − (π/(2|a|))/tan(|a|π) (aが純虚数のとき)
に
a=i/2を代入すると
左辺=1/(1^2−1^2/2^2)+1/(2^2−1^2/2^2)+1/(3^2−1^2/2^2)+・・・
={{1/(1−1/2)−1/(1+1/2)}+{1/(2−1/2)−1/(2+1/2)}+{1/(3−1/2)−1/(3+1/2)}+・・・}
={{1/(1/2)−1/(3/2)}+{1/(3/2)−1/(5/2)}+{1/(5/2)−1/(7/2)}+・・・}
=2{{1/1−1/3}+{1/3−1/5}+{1/5−1/7}+・・・}
=2Σ{1/(2k−1)−1/(2k+1)}
右辺=2
===================================
2の倍数の項のない交代級数
Σ{1/(2k−1)−1/(2k+1)}=1
===================================