■ある無限級数(その144)

 (その135)のやり直し.

1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+

a^2) +・・・

=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)

=-1/(2a^2) + (π/(2a))/tanh(aπ)

=-1/(2a^2) − (π/(2|a|))/tan(|a|π)  (aが純虚数のとき)

a=i/2を代入すると

左辺=1/(1^2−1^2/2^2)+1/(2^2−1^2/2^2)+1/(3^2−1^2/2^2)+・・・

={{1/(1−1/2)−1/(1+1/2)}+{1/(2−1/2)−1/(2+1/2)}+{1/(3−1/2)−1/(3+1/2)}+・・・}

={{1/(1/2)−1/(3/2)}+{1/(3/2)−1/(5/2)}+{1/(5/2)−1/(7/2)}+・・・}

=2{{1/1−1/3}+{1/3−1/5}+{1/5−1/7}+・・・}

=2Σ{1/(2k−1)−1/(2k+1)}

右辺=2

===================================

 2の倍数の項のない交代級数

Σ{1/(2k−1)−1/(2k+1)}=1

===================================