■ある無限級数(その143)
(その135)のやり直し.
1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+
a^2) +・・・
=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)
=-1/(2a^2) + (π/(2a))/tanh(aπ)
=-1/(2a^2) − (π/(2|a|))/tan(|a|π) (aが純虚数のとき)
a=i/6を代入すると
左辺=1/(1^2−1^2/6^2)+1/(2^2−1^2/6^2)+1/(3^2−1^2/6^2)+・・・
=3{{1/(1−1/6)−1/(1+1/6)}+{1/(2−1/6)−1/(2+1/6)}+{1/(3−1/6)−1/(3+1/6)}+・・・}
=3{{1/(5/6)−1/(7/6)}+{1/(11/6)−1/(13/6)}+{1/(17/6)−1/(19/6)}+・・・}
=18{{1/5−1/7}+{1/11−1/13}+{1/17−1/19+・・・}
=18Σ{1/(6k−1)−1/(6k+1)}
右辺=18−(3π)/tan(π/6)
Σ{1/(6k−1)−1/(6k+1)}=1−π/6/tan(π/6)
===================================
a=2i/6を代入すると
左辺=1/(1^2−2^2/6^2)+1/(2^2−2^2/6^2)+1/(3^2−2^2/6^2)+・・・
=3/2{{1/(1−2/6)−1/(1+2/6)}+{1/(2−2/6)−1/(2+2/6)}+{1/(3−2/6)−1/(3+2/6)}+・・・}
=3/2{{1/(4/6)−1/(8/6)}+{1/(10/6)−1/(14/6)}+{1/(16/6)−1/(20/6)}+・・・}
=9{{1/4−1/6}+{1/10−1/14}+{1/16−1/20)+・・・}
=9Σ{1/(6k−2)−1/(6k+2)}
右辺=9/2−(3π/2)/tan(2π/6)
Σ{1/(6k−2)−1/(6k+2)}=1/2−(π/6)/tan(2π/6)
===================================
a=3i/6を代入すると
左辺=1/(1^2−3^2/6^2)+1/(2^2−3^2/6^2)+1/(3^2−3^2/6^2)+・・・
={{1/(1−3/6)−1/(1+3/6)}+{1/(2−3/6)−1/(2+3/6)}+{1/(3−3/6)−1/(3+3/6)}+・・・}
={{1/(3/6)−1/(9/6)}+{1/(9/6)−1/(15/6)}+{1/(15/5)−1/(21/6)}+・・・}
=6{{1/3−1/9}+{1/9−1/15}+{1/15−1/21)+・・・}
=6{1/(6k−3)−1/(6k+3)}
右辺=2−(π)/tan(3π/6)
Σ{1/(6k−3)−1/(6k+3)}=1/3−π/6/tan(3π/6)
===================================
a=4i/6を代入すると
左辺=1/(1^2−4^2/6^2)+1/(2^2−4^2/6^2)+1/(3^2−4^2/6^2)+・・・
=3/4{{1/(1−4/6)−1/(1+4/6)}+{1/(2−4/6)−1/(2+4/6)}+{1/(3−4/6)−1/(3+4/6)}+・・・}
=3/4{{1/(2/6)−1/(10/6)}+{1/(8/6)−1/(16/6)}+{1/(14/6)−1/(22/5)}+・・・}
=18/4{{1/2−1/10}+{1/8−1/16}+{1/14−1/22)+・・・}
=18/4{1/(6k−4)−1/(6k+4)}
右辺=9/8−(3π/4)/tan(4π/6)
Σ{1/(6k−4)−1/(6k+4)}=1/4−π/6/tan(4π/5)
===================================
a=5i/6を代入すると
左辺=1/(1^2−5^2/6^2)+1/(2^2−5^2/6^2)+1/(3^2−5^2/6^2)+・・・
=3/5{{1/(1−5/6)−1/(1+5/6)}+{1/(2−5/6)−1/(2+5/6)}+{1/(3−5/6)−1/(3+5/6)}+・・・}
=3/5{{1/(1/6)−1/(11/6)}+{1/(7/6)−1/(17/6)}+{1/(15/6)−1/(23/5)}+・・・}
=18/5{{1/1−1/11}+{1/7−1/17}+{1/15−1/23)+・・・}
=18/5{1/(6k−5)−1/(6k+5)}
右辺=18/25−(3π/5)/tan(5π/6)
Σ{1/(6k−5)−1/(6k+5)}=1/5−π/6/tan(5π/6)
===================================
6の倍数の項のない交代級数
Σ{1/(6k−5)−1/(6k−4)+1/(6k−3)−1/(6k−2)+1/(6k−1)−1/(6k+1)+1/(6k+2)−1/(6k+3)+1/(6k+4)−1/(6k+5)}=
+1/5−π/6/tan(5π/6)
−1/4+π/6/tan(4π/6)
+1/3−(π/5)/tan(3π/6)
−1/2+π/6/tan(2π/6)
+1−π/6/tan(2π/6)
===================================