■ある無限級数(その142)
(その135)のやり直し.
1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+
a^2) +・・・
=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)
=-1/(2a^2) + (π/(2a))/tanh(aπ)
=-1/(2a^2) − (π/(2|a|))/tan(|a|π) (aが純虚数のとき)
a=i/5を代入すると
左辺=1/(1^2−1^2/5^2)+1/(2^2−1^2/5^2)+1/(3^2−1^2/5^2)+・・・
=5/2{{1/(1−1/5)−1/(1+1/5)}+{1/(2−1/5)−1/(2+1/5)}+{1/(3−1/5)−1/(3+1/5)}+・・・}
=5/2{{1/(4/5)−1/(6/5)}+{1/(9/5)−1/(11/5)}+{1/(14/5)−1/(16/5)}+・・・}
=25/2{{1/4−1/6}+{1/9−1/11}+{1/14−1/16+・・・}
=25/2Σ{1/(5k−1)−1/(5k+1)}
右辺=25/2−(5π/2)/tan(π/5)
Σ{1/(5k−1)−1/(5k+1)}=1−π/5/tan(π/5)
===================================
a=2i/5を代入すると
左辺=1/(1^2−2^2/5^2)+1/(2^2−2^2/5^2)+1/(3^2−2^2/5^2)+・・・
=5/4{{1/(1−2/5)−1/(1+2/5)}+{1/(2−2/5)−1/(2+2/5)}+{1/(3−2/5)−1/(3+2/5)}+・・・}
=5/4{{1/(3/5)−1/(7/5)}+{1/(8/5)−1/(12/5)}+{1/(13/5)−1/(17/5)}+・・・}
=25/4{{1/3−1/7}+{1/8−1/12}+{1/13−1/17)+・・・}
=25/4Σ{1/(5k−2)−1/(5k+2)}
右辺=25/8−(5π/4)/tan(2π/5)
Σ{1/(5k−2)−1/(5k+2)}=1/2−(π/5)/tan(2π/5)
===================================
a=3i/5を代入すると
左辺=1/(1^2−3^2/5^2)+1/(2^2−3^2/5^2)+1/(3^2−3^2/5^2)+・・・
=5/6{{1/(1−3/5)−1/(1+3/5)}+{1/(2−3/5)−1/(2+3/5)}+{1/(3−3/5)−1/(3+3/5)}+・・・}
=5/6{{1/(2/5)−1/(8/5)}+{1/(7/5)−1/(13/5)}+{1/(12/5)−1/(18/5)}+・・・}
=25/6{{1/2−1/8}+{1/7−1/13}+{1/12−1/18)+・・・}
=25/6{1/(5k−3)−1/(5k+3)}
右辺=25/18−(5π/6)/tan(3π/5)
Σ{1/(5k−3)−1/(5k+3)}=1/3−π/5/tan(3π/5)
===================================
a=4i/5を代入すると
左辺=1/(1^2−4^2/5^2)+1/(2^2−4^2/5^2)+1/(3^2−4^2/5^2)+・・・
=5/8{{1/(1−4/5)−1/(1+4/5)}+{1/(2−4/5)−1/(2+4/5)}+{1/(3−4/5)−1/(3+4/5)}+・・・}
=5/8{{1/(1/5)−1/(9/5)}+{1/(6/5)−1/(14/5)}+{1/(16/5)−1/(19/5)}+・・・}
=25/8{{1/1−1/9}+{1/6−1/14}+{1/16−1/19)+・・・}
=25/8{1/(5k−4)−1/(5k+4)}
右辺=25/32−(5π/8)/tan(4π/5)
Σ{1/(5k−4)−1/(5k+4)}=1/4−π/5/tan(4π/5)
===================================
5の倍数の項のない交代級数
Σ{1/(5k−4)−1/(5k−3)+1/(5k−2)−1/(5k−1)+1/(5k+1)−1/(5k+2)+1/(5k+3)−1/(5k+4)}=
+1/4−π/5/tan(4π/5)
−1/3+π/5/tan(3π/5)
+1/2−(π/5)/tan(2π/5)
−1+π/5/tan(π/5)
===================================