■ある無限級数(その141)

 (その135)のやり直し.

1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+

a^2) +・・・

=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)

=-1/(2a^2) + (π/(2a))/tanh(aπ)

=-1/(2a^2) − (π/(2|a|))/tan(|a|π)  (aが純虚数のとき)

a=i/4を代入すると

左辺=1/(1^2−1^2/4^2)+1/(2^2−1^2/4^2)+1/(3^2−1^2/3^2)+・・・

=2{{1/(1−1/4)−1/(1+1/4)}+{1/(2−1/4)−1/(2+1/4)}+{1/(3−1/4)−1/(3+1/4)}+・・・}

=2{{1/(3/4)−1/(5/4)}+{1/(7/4)−1/(9/4)}+{1/(11/4)−1/(13/4)}+・・・}

=8{{1/3−1/5}+{1/7−1/9}+{1/11−1/13+・・・}

=8Σ{1/(4k−1)−1/(4k+1)}

右辺=8−(2π)/tan(π/4)

Σ{1/(4k−1)−1/(4k+1)}=1−π/4/tan(π/4)

===================================

a=2i/4を代入すると

左辺=1/(1^2−2^2/4^2)+1/(2^2−2^2/4^2)+1/(3^2−2^2/3^2)+・・・

={{1/(1−2/4)−1/(1+2/4)}+{1/(2−2/4)−1/(2+2/4)}+{1/(3−2/4)−1/(3+2/4)}+・・・}

={{1/(2/4)−1/(6/4)}+{1/(6/4)−1/(10/4)}+{1/(10/4)−1/(14/4)}+・・・}

=4{{1/2−1/6}+{1/6−1/10}+{1/10−1/14)+・・・}

=4Σ{1/(4k−2)−1/(4k+2)}

右辺=2

Σ{1/(4k−2)−1/(4k+2)}=1/2

===================================

a=3i/4を代入すると

左辺=1/(1^2−3^2/4^2)+1/(2^2−3^2/4^2)+1/(3^2−3^2/3^2)+・・・

=2/3{{1/(1−3/4)−1/(1+3/4)}+{1/(2−3/4)−1/(2+3/4)}+{1/(3−3/4)−1/(3+3/4)}+・・・}

=2/3{{1/(1/4)−1/(7/4)}+{1/(5/4)−1/(11/4)}+{1/(9/4)−1/(11/4)}+・・・}

=8/3{{1/1−1/7}+{1/5−1/11}+{1/9−1/11)+・・・}

=8/3Σ{1/(4k−3)−1/(4k+3)}

右辺=8/9−(2π/3)/tan(3π/4)

Σ{1/(4k−3)−1/(4k+3)}=1/3−π/4/tan(3π/4)

===================================

 4の倍数の項のない交代級数

Σ{1/(4k−3)−1/(4k−2)+1/(4k−1)−1/(4k+1)+1/(4k+2)−1/(4k+3)}=

1/3−π/4/tan(3π/4)

−1/2

+1−π/4/tan(π/4)=5/6

===================================