■ある無限級数(その140)

 (その135)のやり直し.

1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+

a^2) +・・・

=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)

=-1/(2a^2) + (π/(2a))/tanh(aπ)

=-1/(2a^2) − (π/(2|a|))/tan(|a|π)  (aが純虚数のとき)

a=i/3を代入すると

左辺=1/(1^2−1^2/3^2)+1/(2^2−1^2/3^2)+1/(3^2−1^2/3^2)+・・・

=3/2{{1/(1−1/3)−1/(1+1/3)}+{1/(2−1/3)−1/(2+1/3)}+{1/(3−1/3)−1/(3+1/3)}+・・・}

=3/2{{1/(2/3)−1/(4/3)}+{1/(5/3)−1/(7/3)}+{1/(8/3)−1/(10/3)}+・・・}

=9/2{{1/2−1/4}+{1/5−1/7}+{1/8−1/10}+・・・}

=9/2Σ{1/(3k−1)−1/(3k+1)}

右辺=9/2−(3π/2)/tan(π/3)

Σ{1/(3k−1)−1/(3k+1)}

=1−(π/3)/tan(π/3)

a=2i/3を代入すると

左辺=1/(1^2−2^2/3^2)+1/(2^2−2^2/3^2)+1/(3^2−2^2/3^2)+・・・

=3/4{{1/(1−2/3)−1/(1+2/3)}+{1/(2−2/3)−1/(2+2/3)}+{1/(3−2/3)−1/(3+2/3)}+・・・}

=3/4{{1/(1/3)−1/(5/3)}+{1/(4/3)−1/(8/3)}+{1/(7/3)−1/(11/3)}+・・・}

=9/4{{1−1/5}+{1/4−1/8}+{1/7−1/11}+・・・}

=9/4Σ{1/(3k−2)−1/(3k+2)}

右辺=9/8−(3π/4)/tan(2π/3)

Σ{1/(3k−2)−1/(3k+2)}

=1/2−(π/3)/tan(2π/3)

===================================

 3の倍数の項のない交代級数

Σ{1/(3k−2)−1/(3k−1)+1/(3k+1)−1/(3k+2)}

=1/2−(π/3)/tan(2π/3)

−1+(π/3)/tan(π/3)

===================================