■ある無限級数(その140)
(その135)のやり直し.
1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+
a^2) +・・・
=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)
=-1/(2a^2) + (π/(2a))/tanh(aπ)
=-1/(2a^2) − (π/(2|a|))/tan(|a|π) (aが純虚数のとき)
に
a=i/3を代入すると
左辺=1/(1^2−1^2/3^2)+1/(2^2−1^2/3^2)+1/(3^2−1^2/3^2)+・・・
=3/2{{1/(1−1/3)−1/(1+1/3)}+{1/(2−1/3)−1/(2+1/3)}+{1/(3−1/3)−1/(3+1/3)}+・・・}
=3/2{{1/(2/3)−1/(4/3)}+{1/(5/3)−1/(7/3)}+{1/(8/3)−1/(10/3)}+・・・}
=9/2{{1/2−1/4}+{1/5−1/7}+{1/8−1/10}+・・・}
=9/2Σ{1/(3k−1)−1/(3k+1)}
右辺=9/2−(3π/2)/tan(π/3)
Σ{1/(3k−1)−1/(3k+1)}
=1−(π/3)/tan(π/3)
a=2i/3を代入すると
左辺=1/(1^2−2^2/3^2)+1/(2^2−2^2/3^2)+1/(3^2−2^2/3^2)+・・・
=3/4{{1/(1−2/3)−1/(1+2/3)}+{1/(2−2/3)−1/(2+2/3)}+{1/(3−2/3)−1/(3+2/3)}+・・・}
=3/4{{1/(1/3)−1/(5/3)}+{1/(4/3)−1/(8/3)}+{1/(7/3)−1/(11/3)}+・・・}
=9/4{{1−1/5}+{1/4−1/8}+{1/7−1/11}+・・・}
=9/4Σ{1/(3k−2)−1/(3k+2)}
右辺=9/8−(3π/4)/tan(2π/3)
Σ{1/(3k−2)−1/(3k+2)}
=1/2−(π/3)/tan(2π/3)
===================================
3の倍数の項のない交代級数
Σ{1/(3k−2)−1/(3k−1)+1/(3k+1)−1/(3k+2)}
=1/2−(π/3)/tan(2π/3)
−1+(π/3)/tan(π/3)
===================================