■ある無限級数(その137)
杉岡幹生氏に教えていただいた5の倍数の項のない交代級数
1-1/2+1/3-1/4+1/6-1/7+1/8-1/9+1/11-1/12+1/13-1/14+1/16-1/17+・・・
=(π/5){√(1+2/√5)-√(1-2/√5)}
=(π/5)√(2-2/√5)
=(π/5)/sin(2π/5)
=(2π/5)/2sin(2π/5)
はdiet調和級数の交代版と考えることもできるだろう.
===================================
【1】diet調和級数の収束
調和級数は発散しますが,分母に9が含まれている項をすべて取り除けば発散しなくなります.
J=(1/1+・・・+1/8)+(1/10+・・・1/18+1/20+・・・+1/88)+(1/100+・・・+1/888)+・・・
において,括弧内のすべての項を括弧内の最大項に置き換えると
1/1+・・・+1/8<1/1+・・・1/1<9/1
1/10+・・・1/18+1/20+・・・+1/88<1/10+・・・1/10<9^2/10
1/100+・・・+1/888<1/100+・・・1/100<9^3/10^2
J<9/1+9^2/10+9^3/10^2+・・・=9/(1−9/10)=90
したがって,9をすべて取り除いた調和級数は収束します.同様に,取り除く数がどれであっても収束するのですが,10%の数を取り除くと収束する・・・なにか奇異に感じられませんか?
===================================