■ある無限級数(その133)

 杉岡幹生氏に教えていただいた5の倍数の項のない交代級数

1-1/2+1/3-1/4+1/6-1/7+1/8-1/9+1/11-1/12+1/13-1/14+1/16-1/17+・・・

=(π/5){√(1+2/√5)-√(1-2/√5)}

=(π/5)√(2-2/√5)

=(π/5)/sin(2π/5)

=(2π/5)/2sin(2π/5)

は少なくともフェルマー素数の場合はうまく行くのではないかと直観される.とはいってもp=17,257,65537では骨が折れるから,p=3の場合を調べてみたい.

===================================

1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+

a^2) +・・・

=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)

=-1/(2a^2) + (π/(2a))/tanh(aπ)

=-1/(2a^2) − (π/(2|a|))/tan(|a|π)  (aが純虚数のとき)

a=i/3を代入すると

左辺=1/(1^2−1/3^2)+1/(2^2−1/3^2)+1/(3^2−1/3^2)+・・・

=3/2{{1/(1−1/3)−1/(1+1/3)}+{1/(2−1/3)−1/(2+1/3)}+{1/(3−1/3)−1/(3+1/3)}+・・・}

=3/2{{1/(2/3)−1/(4/3)}+{1/(5/3)−1/(7/3)}+{1/(8/3)−1/(10/3)}+・・・}

=9/2{{1/2−1/4}+{1/5−1/7}+{1/8−1/10}+・・・}

=9/2{1/2−1/4+1/5−1/7+1/8−1/10+・・・}

右辺=9/2−(3π/2)/tan(π/3)

1/2−1/4+1/5−1/7+1/8−1/10+・・・

=1−(π/3)/tan(π/3)

−1/2+1/4−1/5+1/7−1/8+1/10−・・・

=−1+(π/3)/tan(π/3)

1−1/2+1/4−1/5+1/7−1/8+1/10−・・・

=(π/3)/tan(π/3)

=(π/3√3)

===================================