■ある無限級数(その133)
杉岡幹生氏に教えていただいた5の倍数の項のない交代級数
1-1/2+1/3-1/4+1/6-1/7+1/8-1/9+1/11-1/12+1/13-1/14+1/16-1/17+・・・
=(π/5){√(1+2/√5)-√(1-2/√5)}
=(π/5)√(2-2/√5)
=(π/5)/sin(2π/5)
=(2π/5)/2sin(2π/5)
は少なくともフェルマー素数の場合はうまく行くのではないかと直観される.とはいってもp=17,257,65537では骨が折れるから,p=3の場合を調べてみたい.
===================================
1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+
a^2) +・・・
=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)
=-1/(2a^2) + (π/(2a))/tanh(aπ)
=-1/(2a^2) − (π/(2|a|))/tan(|a|π) (aが純虚数のとき)
a=i/3を代入すると
左辺=1/(1^2−1/3^2)+1/(2^2−1/3^2)+1/(3^2−1/3^2)+・・・
=3/2{{1/(1−1/3)−1/(1+1/3)}+{1/(2−1/3)−1/(2+1/3)}+{1/(3−1/3)−1/(3+1/3)}+・・・}
=3/2{{1/(2/3)−1/(4/3)}+{1/(5/3)−1/(7/3)}+{1/(8/3)−1/(10/3)}+・・・}
=9/2{{1/2−1/4}+{1/5−1/7}+{1/8−1/10}+・・・}
=9/2{1/2−1/4+1/5−1/7+1/8−1/10+・・・}
右辺=9/2−(3π/2)/tan(π/3)
1/2−1/4+1/5−1/7+1/8−1/10+・・・
=1−(π/3)/tan(π/3)
−1/2+1/4−1/5+1/7−1/8+1/10−・・・
=−1+(π/3)/tan(π/3)
1−1/2+1/4−1/5+1/7−1/8+1/10−・・・
=(π/3)/tan(π/3)
=(π/3√3)
===================================