■ある無限級数(その131)
[Q]5の倍数の項のない交代級数
1-1/2+1/3-1/4+1/6-1/7+1/8-1/9+1/11-1/12+1/13-1/14+1/16-1/17+・・・
の値は?
[A]
(π/5){√(1+2/√5)-√(1-2/√5)}
=(π/5)√(2-2/√5)
=(π/5)/sin(2π/5)
=(2π/5)/2sin(2π/5)
===================================
杉岡幹生氏にこの結果を解説して頂くが,ここで補足しておきたい.
√(1+2/√5)
√{(√5+2)/√5}
=√(5+2√5/5)=tan3π/10
√(1−2/√5)
√{(√5−2)/√5}
=√(5−2√5/5)=tanπ/10
tan3π/10−tanπ/10
={sin3π/10cosπ/10−sinπ/10cos3π/10}*/cos3π/10cosπ/10
=(sinπ/5)/cos3π/10cosπ/10
ここで,
sinπ/5=sin2π/10=cos3π/10
cosπ/10=sin4π/10=sin2π/5
tan3π/10−tanπ/10=1/sin2π/5
√((2−2/√5)
=√((2√5−2)/√5)
=√((10−2√5)/5)
=1/sin2π/5
===================================