■ある無限級数(その131)

[Q]5の倍数の項のない交代級数

1-1/2+1/3-1/4+1/6-1/7+1/8-1/9+1/11-1/12+1/13-1/14+1/16-1/17+・・・

の値は?

[A]

(π/5){√(1+2/√5)-√(1-2/√5)}

=(π/5)√(2-2/√5)

=(π/5)/sin(2π/5)

=(2π/5)/2sin(2π/5)

===================================

 杉岡幹生氏にこの結果を解説して頂くが,ここで補足しておきたい.

√(1+2/√5)

√{(√5+2)/√5}

=√(5+2√5/5)=tan3π/10

√(1−2/√5)

√{(√5−2)/√5}

=√(5−2√5/5)=tanπ/10

tan3π/10−tanπ/10

={sin3π/10cosπ/10−sinπ/10cos3π/10}*/cos3π/10cosπ/10

=(sinπ/5)/cos3π/10cosπ/10

ここで,

sinπ/5=sin2π/10=cos3π/10

cosπ/10=sin4π/10=sin2π/5

tan3π/10−tanπ/10=1/sin2π/5

√((2−2/√5)

=√((2√5−2)/√5)

=√((10−2√5)/5)

=1/sin2π/5

===================================