■オイラーの素数生成式(その49)

 Q(√2)ではε=1+√2が基本単数ですが,その他の解は

  (1+√2)^n=an+bn√2

により与えられます.

  (1+√2)(1−√2)=−1

  (1+√2)^2(1−√2)^2=1

  (1+√2)^3(1−√2)^3=−1

  (1+√2)^4(1−√2)^4=1

より,x^2−2y^2=±1の解を(tn,un),

   x^2−2y^2=1の解を(xn,yn),

   x^2−2y^2=−1の解を(rn,sn)

とおくと

  tn+√2un=(1+√2)^n

  xn+√2yn=(1+√2)^2n=(3+2√2)^n

  rn+√2sn=(1+√2)^2n-1=(1+√2)(3+2√2)^n-1

で与えられます.

===================================