■オイラーの素数生成式(その49)
Q(√2)ではε=1+√2が基本単数ですが,その他の解は
(1+√2)^n=an+bn√2
により与えられます.
(1+√2)(1−√2)=−1
(1+√2)^2(1−√2)^2=1
(1+√2)^3(1−√2)^3=−1
(1+√2)^4(1−√2)^4=1
より,x^2−2y^2=±1の解を(tn,un),
x^2−2y^2=1の解を(xn,yn),
x^2−2y^2=−1の解を(rn,sn)
とおくと
tn+√2un=(1+√2)^n
xn+√2yn=(1+√2)^2n=(3+2√2)^n
rn+√2sn=(1+√2)^2n-1=(1+√2)(3+2√2)^n-1
で与えられます.
===================================