x+y=A,x^2-xy+y^2=B
x^2-x(A-x)+(A-x)^2=B
3x^2-3Ax+A^2-B=0
x=1/6・{3A±(12B-3A^2)^1/2}
12B-3A^2=12x^2-12xy+12y^2-3x^2+6xy-3y^2=9x^2-6xy+9y^2
は少なくとも平方数でなければならない.
9x^2-6xy+9y^2
=a(x+y)^2+b(x-y)^2
のように2個の平方数の和で表されるとすると
a+b=9,2a-2b=-6
a+b=9,a-b=-3→a=3,b=6
9x^2-6xy+9y^2
=3(x+y)^2+6(x-y)^2
=3{(x+y)^2+2(x-y)^2}
これで,3の倍数にもなった
x+y=a,x-y=bとして,a^2+2b^2=3c^2と表されることが必要になる.
X^2+2Y^2=3
を満たす(X,Y)は無数にあり,(X,Y)=(1,1)を通る直線の傾きをmとおくと,
Y=m(X-1)+1
X^2+2m^2(X-1)^2+4m(X-1)+2=3
X^2+2m^2(X^2-2X+1)+4m(X-1)+2=3
(2m^2+1)X^2-(4m^2-4m)X+2m^2-4m-1=0
(2m^2+1)X^2-4m(m-1)X+2m^2-4m-1=0
D=4m^2(m-1)^2-(2m^2+1)(2m^2-4m-1)
=4m^4-8m^3+4m^2-4m^4+8m^3+2m^2-2m^2+4m+1
=(2m+1)^2
X={2m(m-1)+(2m+1)}/(2m^2+1)・・{偶+奇}/奇
=(2m^2+1)/(2m^2+1)=1
Y=(2m^3+m)/(2m^2+1)-m+1
={2m^3+m-2m^3-m+2m^2+1}/(2m^2+1)
=(2m^2+1)/(2m^2+1)=1
X={2m(m-1)-(2m+1)}/(2m^2+1)・・{偶-奇}/奇
=(2m^2-4m-1)/(2m^2+1)
Y=(2m^3-4m^2-m)/(2m^2+1)-m+1
={2m^3-4m^2-m-2m^3-m+2m^2+1}/(2m^2+1)
=(-2m^2-2m+1)/(2m^2+1)
とパラメトライズされる.
===================================
[まとめ]
(2m^2-4m-1)^2+2(-2m^2-2m+1)^2=3(2m^2+1)^2
左辺は4次式,右辺も4次式
m=1のとき,3^2+2・3^2=3・3^2
m=2のとき,1^2+2・11^2=3・9^2
m=3のとき,5^2+2・23^2=3・19^2
===================================