■タクシー数(その2)

  x+y=A,x^2−xy+y^2=B

  x^2−x(A−x)+(A−x)^2=B

  3x^2−3Ax+A^2−B=0

  x=1/6・{3A±(12B−3A^2)^1/2}

 12B−3A^2=12x^2−12xy+12y^2−3x^2+6xy−3y^2=9x^2−6xy+9y^2

は少なくとも平方数でなければならない.

 9x^2−6xy+9y^2

=a(x+y)^2+b(x−y)^2

のように2個の平方数の和で表されるとすると

  a+b=9,2a−2b=−6

  a+b=9,a−b=−3→a=3,b=6

 9x^2−6xy+9y^2

=3(x+y)^2+6(x−y)^2

=3{(x+y)^2+2(x−y)^2}

これで,3の倍数にもなった

  x+y=a,x−y=bとして,a^2+2b^2=3c^2と表されることが必要になる.

  X^2+2Y^2=3

を満たす(X,Y)は無数にあり,(X,Y)=(1,1)を通る直線の傾きをmとおくと,

  Y=m(X−1)+1

  X^2+2m^2(X−1)^2+4m(X−1)+2=3

  X^2+2m^2(X^2−2X+1)+4m(X−1)+2=3

  (2m^2+1)X^2−(4m^2−4m)X+2m^2−4m−1=0

  (2m^2+1)X^2−4m(m−1)X+2m^2−4m−1=0

D=4m^2(m−1)^2−(2m^2+1)(2m^2−4m−1)

=4m^4−8m^3+4m^2−4m^4+8m^3+2m^2−2m^2+4m+1

=(2m+1)^2

X={2m(m−1)+(2m+1)}/(2m^2+1)・・{偶+奇}/奇

=(2m^2+1)/(2m^2+1)=1

Y=(2m^3+m)/(2m^2+1)−m+1

={2m^3+m−2m^3−m+2m^2+1}/(2m^2+1)

=(2m^2+1)/(2m^2+1)=1

X={2m(m−1)−(2m+1)}/(2m^2+1)・・{偶−奇}/奇

=(2m^2−4m−1)/(2m^2+1)

Y=(2m^3−4m^2−m)/(2m^2+1)−m+1

={2m^3−4m^2−m−2m^3−m+2m^2+1}/(2m^2+1)

=(−2m^2−2m+1)/(2m^2+1)

とパラメトライズされる.

===================================

[まとめ]

(2m^2−4m−1)^2+2(−2m^2−2m+1)^2=3(2m^2+1)^2

左辺は4次式,右辺も4次式

m=1のとき,3^2+2・3^2=3・3^2

m=2のとき,1^2+2・11^2=3・9^2

m=3のとき,5^2+2・23^2=3・19^2

===================================