■タクシー数
累乗が登場する数として「タクシー数」がある.その由来は,数学者ハーディがラマヌジャンに会いに行ったとき,タクシーナンバーが1729という何の変哲もない数であったと彼に伝えたところ,ラマヌジャンはそれは2つの3乗数で2通りに表せる最小の数だと答えたというエピソードは大変有名である.
1729=12^3+1^3=10^3+9^3
興味深いことに,1729のこの性質は17世紀にフレニクルがすでに見つけていた.フレニクルは12^3+1^3=10^3+9^3のほかにも
9^3+15^3=2^3+16^3
15^3+33^3=2^3+34^3
16^3+33^3=9^3+34^3
19^3+24^3=10^3+27^3
を見つけている.
19^3+24^3=10^3+27^3
を除き,連続する整数が1組ずつある.また,2つの4乗数の和で2通りに表される最小の数は,
635318657=158^4+59^4=133^4+134^4
で,これにも連続する整数が1組あるのがおもしろい.
負の数を使ってよければ
91=4^3+3^3=6^3+(−5)^3
のようなものもあるが,これにも連続する整数が1組ある・・・.
===================================
[Q]x^3+y^3=1729を満たす整数解(x,y)をすべて求めよ.
[A]x^3+y^3=(x+y)(x^2−xy+y^2)=7・13・19
[1]x^2−xy+y^2=7・13・19,x+y=1
[2]x^2−xy+y^2=13・19,x+y=7
[3]x^2−xy+y^2=7・19,x+y=13
[4]x^2−xy+y^2=7・13,x+y=19
[5]x^2−xy+y^2=19,x+y=7・13
[6]x^2−xy+y^2=13,x+y=7・19
[7]x^2−xy+y^2=7,x+y=13・19
[8]x^2−xy+y^2=1,x+y=7・13・19
x+y=A,x^2−xy+y^2=B
x^2−x(A−x)+(A−x)^2=B
3x^2−3Ax+A^2−B=0
x=1/6・{3A±(12B−3A^2)^1/2}
に代入すると(x,y)=(1,12),(9,10),(10,9),(12,1))が得られる.
===================================