■1000!/10^250は整数であるか? (その43)

 x^(x^x^x^x^x^・・・)=2はx^2=2と書き変えることができて

  x=√2

 実際に計算してみると

  √2=1.1414213562・・・

  √2^√2=1.632526919・・・

  √2^(√2^√2)=1.760893555・・・

  √2^(√2^√2^√2)=1.840910869・・・

  √2^(√2^√2^√2^√2)=1.892712696・・・

  √2^(√2^√2^√2^√2^√2)=1.926999701・・・

→2に関連する動画は

https://www.youtube.com/watch?v=JrOG1tKAatg

===================================

 関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示した.

exp(−e)=0.06598803584・・・<1

exp(1/e)=1.44466786100>√2>1

 したがって,

 x^(x^x^x^x^x^・・・)=3はx^2=3と書き変えることができない.

===================================