■1000!/10^250は整数であるか? (その37)
[Q]1!+2!+3!+・・・+1000! (mod10)
[A] 1+2+6+24+120+720+・・・
=1+2+6+24+Σ10k
=33+10n
1!+2!+3!+・・・+1000!=3 (mod10)
[Q]1!+2!+3!+・・・+1000! (mod10^2)
[A] 1+2+6+24+120+720+・・・+9!+
=1+2+6+24+120+720+・・・+9!+Σ100k
=1+2+6+24+120+720+5040+40320+362880
下3桁のみを計算すると・・・
=33+2080=2113
1!+2!+3!+・・・+1000!=13 (mod10^2)
===================================
[Q](100!−99!−98!)/(100!+99!+98!)=?
[A]98!(100・99−99−1)/98!(100・99+99+1)
=(9900−99−1)/(9900+99+1)
=9800/10000=49/50
===================================