■周期3はカオスを意味する(その4)
c)3<k≦3.56995ならば2^n個の極限値の間を振動する.
i)3<k<3.44(=1+√6)ならば2つの極限値の間を振動する(周期2のサイクル).
ii)3.44<k<3.54ならば4つの極限値の間を振動する(周期4のサイクル).
iii)3.54<k<3.564ならば8つの極限値の間を振動する(周期8のサイクル).
iv)3.564<k<3.566ならば16の極限値の間を振動する(周期16のサイクル).
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</P>
===================================
【2】ファイゲンバウムの定数(1975年)
λ1=3,λ2=3.44,λ3=3.54,λ4=3.564,λ5=3.566,・・・,λnは収束しλ∞=3.56995
λ2−λ1=.44,λ3−λ2=.1,λ4−λ3=.024,λ5−λ4=.002,このとき,
(λn+1−λn)/(λn−λn-1)→4.6692・・・
となるとあるが・・・?
===================================
1975年頃,ファイゲンバウムはロジスティック写像の周期倍分岐について調べ始めた.まず彼は2^n周期軌道が最初に出現する値λnを予測するための母関数理論を発展させた.
どこで次の分岐が生じるかを推測し,λnが幾何級数的に収束し,連続する2つの転移間の距離が4.6692・・・の割合で縮んでいくという簡単な規則に気づいた.
周期倍分岐は2次写像だけの性質ではなく,たとえば,
xn+1=rsinπxn
でも生じ,実際のところ,どのような単峰写像が反復されたとしても,同一の収束半径
(λn+1−λn)/(λn−λn-1)→4.6692・・・
が出現する.
この意味において,ファイゲンバウムの定数は普遍的であって,円に対するπと同様に,周期倍分岐に対して基本となる新たな数学定数となったのである.
===================================