■tannθ=ntanθ(その40)
t=tanθ/2とおくと
cosθ=(1−t^2)/(1+t^2)
===================================
[1]n=2
2/(1−tan^2θ)=−1
tan^2θ=3,cosθ=1/2,60°
cosξ=cos2θ=(1−t^2)/(1+t^2)=−1/2,120°
[2]n=3(2次元)
(3−tan^2θ)/(1−3tan^2θ)=−1
tan^2θ=1,cosθ=1/√2,45°
cosξ=cos2θ=(1−t^2)/(1+t^2)=0,90°
[3]n=4(3次元)
(4−4tan^2θ)/(1−6tan^2θ+tan^4θ)=−1
5−10tan^2θ+tan^4θ=0
tan^2θ=5+√20または5−√20(*)
cosθ=(√5+1)/4,36°
cosξ=cos2θ=(1−t^2)/(1+t^2)=(√5−1)/4,72°
[4]n=5(4次元)
(5−10tan^2θ+tan^4θ)/(1−10tan^2θ+5tan^4θ)=−1
6−20tan^2θ+6tan^4θ=0
tan^2θ=3または1/3(*),cosθ=√3/2,30°
cosξ=cos2θ=(1−t^2)/(1+t^2)=1/2,60°
===================================