■tannθ=ntanθ(その40)

 t=tanθ/2とおくと

  cosθ=(1−t^2)/(1+t^2)

===================================

[1]n=2

  2/(1−tan^2θ)=−1

  tan^2θ=3,cosθ=1/2,60°

  cosξ=cos2θ=(1−t^2)/(1+t^2)=−1/2,120°

[2]n=3(2次元)

  (3−tan^2θ)/(1−3tan^2θ)=−1

  tan^2θ=1,cosθ=1/√2,45°

  cosξ=cos2θ=(1−t^2)/(1+t^2)=0,90°

[3]n=4(3次元)

  (4−4tan^2θ)/(1−6tan^2θ+tan^4θ)=−1

  5−10tan^2θ+tan^4θ=0

  tan^2θ=5+√20または5−√20(*)

  cosθ=(√5+1)/4,36°

  cosξ=cos2θ=(1−t^2)/(1+t^2)=(√5−1)/4,72°

[4]n=5(4次元)

  (5−10tan^2θ+tan^4θ)/(1−10tan^2θ+5tan^4θ)=−1

  6−20tan^2θ+6tan^4θ=0

  tan^2θ=3または1/3(*),cosθ=√3/2,30°

  cosξ=cos2θ=(1−t^2)/(1+t^2)=1/2,60°

===================================