■サマーヴィルの等面四面体(その580)
【1】△4 in △3
P0(m,0,m√2,h)
P1(0,0,0,0)
P2(0,0,0,4h)
P3(m,m√2,0,3h)
P4(2m,0,0,2h)
とおくと
P0P1^2=3m^2+h^2
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+4h^2
P0P4^2=3m^2+h^2
P1P2^2=16h^2
P1P3^2=3m^2+9h^2
P1P4^2=4m^2+4^2
P2P3^2=3m^2+h^2
P2P4^2=4m^2+4h^2
P3P4^2=3m^2+h^2
3m^2+h^2(4)<3m^2+9h^2(2)
4m^2+4h^2(3)
16h^2(1)
△4は
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
であるから
3m^2+h^2=16h^2
3m^2+9h^2=4m^2+4h^2
16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4
===================================
a^2=3m^2+h^2(4)
b^2=4m^2+4h^2(3)
c^2=3m^2+9h^2(2)
d^2=16h^2(1)
h^2を消去すると
(a^2−3m^2)=(b^2−4m^2)/4=(c^2−3m^2)/9=d^2/16
b^2,c^2,d^2をa^2,m^2で表すと
b^2=4a^2−8m^2
c^2=9a^2−24m^2
d^2=16a^2−48m^2
6b^2=24a^2−48m^2
4c^2=36a^2−96m^2
d^2=16a^2−48m^2
6b^2=24a^2−48m^2
−4c^2=−36a^2+96m^2
d^2=16a^2−48m^2
6b^2−4c^2+d^2=4a^2 (OK)
===================================