■サマーヴィルの等面四面体(その580)

【1】△4 in △3

  P0(m,0,m√2,h)

  P1(0,0,0,0)

  P2(0,0,0,4h)

  P3(m,m√2,0,3h)

  P4(2m,0,0,2h)

とおくと

  P0P1^2=3m^2+h^2

  P0P2^2=3m^2+9h^2

  P0P3^2=4m^2+4h^2

  P0P4^2=3m^2+h^2

  P1P2^2=16h^2

  P1P3^2=3m^2+9h^2

  P1P4^2=4m^2+4^2

  P2P3^2=3m^2+h^2

  P2P4^2=4m^2+4h^2

  P3P4^2=3m^2+h^2

 3m^2+h^2(4)<3m^2+9h^2(2)

 4m^2+4h^2(3)

 16h^2(1)

 △4は

  P0P1=P1P2=P2P3=P3P4=2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0P4=2

であるから

  3m^2+h^2=16h^2

  3m^2+9h^2=4m^2+4h^2

  16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4

===================================

a^2=3m^2+h^2(4)

b^2=4m^2+4h^2(3)

c^2=3m^2+9h^2(2)

d^2=16h^2(1)

h^2を消去すると

(a^2−3m^2)=(b^2−4m^2)/4=(c^2−3m^2)/9=d^2/16

b^2,c^2,d^2をa^2,m^2で表すと

b^2=4a^2−8m^2

c^2=9a^2−24m^2

d^2=16a^2−48m^2

6b^2=24a^2−48m^2

4c^2=36a^2−96m^2

d^2=16a^2−48m^2

6b^2=24a^2−48m^2

−4c^2=−36a^2+96m^2

d^2=16a^2−48m^2

6b^2−4c^2+d^2=4a^2  (OK)

===================================