■サマーヴィルの等面四面体(その569)
△in △,non△ in non△の場合は
h^2=1/n,m^2=1+1/n
nh=√n (最短辺の方向)
であったが,non△ in △の場合はスケール変換で対応している.
===================================
(F4 in △2 prism)
h^2=2/3,3h=√6 (F4の最長辺)
(F5 in △3 prism)
h^2=2/4,4h=√8 (F5の最長辺ではない)
(F6 in △4 prism)
h^2=2/5,5h=√10 (F6の最長辺ではない)
(F7 in △5 prism)
h^2=2/6,6h=√12 (F7の最長辺ではない)
===================================
(G5 in △2 prism)
h^2=3/3,3h=3 (G5の最長辺)
(G6 in △3 prism)
h^2=3/4,4h=√12 (G6の最長辺)
(G7 in △4 prism)
h^2=3/5,5h=√15 (G7の最長辺ではない)
(G8 in △5 prism)
h^2=3/6,6h=√18 (G8の最長辺ではない)
===================================
(H6 in △2 prism)
h^2=4/3,3h=√12 (H6の最長辺)
(H7 in △3 prism)
h^2=4/4,4h=4 (H7の最長辺)
(H7 in △4 prism)
h^2=4/5,5h=√20 (H8の最長辺)
(H8 in △5 prism)
h^2=4/6,6h=√24 (H8の最長辺ではない)
===================================