■サマーヴィルの等面四面体(その569)

 △in △,non△ in non△の場合は

  h^2=1/n,m^2=1+1/n

  nh=√n  (最短辺の方向)

であったが,non△ in △の場合はスケール変換で対応している.

===================================

(F4 in △2 prism)

h^2=2/3,3h=√6  (F4の最長辺)

(F5 in △3 prism)

h^2=2/4,4h=√8  (F5の最長辺ではない)

(F6 in △4 prism)

h^2=2/5,5h=√10  (F6の最長辺ではない)

(F7 in △5 prism)

h^2=2/6,6h=√12  (F7の最長辺ではない)

===================================

(G5 in △2 prism)

h^2=3/3,3h=3  (G5の最長辺)

(G6 in △3 prism)

h^2=3/4,4h=√12  (G6の最長辺)

(G7 in △4 prism)

h^2=3/5,5h=√15  (G7の最長辺ではない)

(G8 in △5 prism)

h^2=3/6,6h=√18  (G8の最長辺ではない)

===================================

(H6 in △2 prism)

h^2=4/3,3h=√12  (H6の最長辺)

(H7 in △3 prism)

h^2=4/4,4h=4  (H7の最長辺)

(H7 in △4 prism)

h^2=4/5,5h=√20  (H8の最長辺)

(H8 in △5 prism)

h^2=4/6,6h=√24  (H8の最長辺ではない)

===================================