■サマーヴィルの等面四面体(その559)
P0(1,0,√2)
P1(0,0,0)
P2(1,√2,0)
P3(2,0,0)
は△3
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
をみたす.
===================================
【1】△4 in △3
P0(m,0,m√2,h)
P1(0,0,0,0)
P2(0,0,0,4h)
P3(m,m√2,0,3h)
P4(2m,0,0,2h)
とおくと
P0P1^2=3m^2+h^2
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+4h^2
P0P4^2=3m^2+h^2
P1P2^2=16h^2
P1P3^2=3m^2+9h^2
P1P4^2=4m^2+4^2
P2P3^2=3m^2+h^2
P2P4^2=4m^2+4h^2
P3P4^2=3m^2+h^2
3m^2+h^2(4)<3m^2+9h^2(2)
4m^2+4h^2(3)
16h^2(1)
△4は
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
であるから
3m^2+h^2=16h^2
3m^2+9h^2=4m^2+4h^2
16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4
===================================
【2】F5 in △3
F5は
P1P2=P2P3=P3P4=P4P5=√5
P1P3=P2P4=P3P5=√8
P1P4=P2P5=3
P1P5=√8
3m^2+h^2=5
3m^2+9h^2=9
4m^2+4h^2=16h^2=8,h^2=1/2,m^2=3/2
→m^2=3h^2
P0P1^2=10h^2*
P0P2^2=18h^2
P0P3^2=16h^2
P0P4^2=10h^2*
P1P2^2=16h^2
P1P3^2=18h^2
P1P4^2=16h^2
P2P3^2=10h^2*
P2P4^2=16h^2
P3P4^2=10h^2
となって,√5:√8:3となった.
===================================
【3】G6 in △3
3m^2+h^2(4)<3m^2+9h^2(2)
4m^2+4h^2(3),16h^2(1)
G6は
P2P3=P3P4=P4P5=P5P6=√6
P2P4=P3P5=P4P6=√10
P2P5=P3P6=√12
P2P6=√12
3m^2+h^2=6
4m^2+4h^2=10
3m^2+9h^2=16h^2=12→3m^2=7h^2
h^2=3/4,m^2=7/4
は条件を満たす.
===================================
【4】H7 in △3
3m^2+h^2(4)<3m^2+9h^2(2)
4m^2+4h^2(3),16h^2(1)
H7は
P3P4=P4P5=P5P6=P6P7=√7
P3P5=P4P6=P5P7=√12
P3P6=P4P7=√15
P3P7=4
16h^2=16
3m^2+h^2=7
4m^2+4h^2=12
3m^2+9h^2=15
h^2=1,m^2=2は条件を満たす.
===================================