■サマーヴィルの等面四面体(その559)

  P0(1,0,√2)

  P1(0,0,0)

  P2(1,√2,0)

  P3(2,0,0)

は△3

  P0P1=P1P2=P2P3=√3

  P0P2=P1P3=2

  P0P3=√3

をみたす.

===================================

【1】△4 in △3

  P0(m,0,m√2,h)

  P1(0,0,0,0)

  P2(0,0,0,4h)

  P3(m,m√2,0,3h)

  P4(2m,0,0,2h)

とおくと

  P0P1^2=3m^2+h^2

  P0P2^2=3m^2+9h^2

  P0P3^2=4m^2+4h^2

  P0P4^2=3m^2+h^2

  P1P2^2=16h^2

  P1P3^2=3m^2+9h^2

  P1P4^2=4m^2+4^2

  P2P3^2=3m^2+h^2

  P2P4^2=4m^2+4h^2

  P3P4^2=3m^2+h^2

 3m^2+h^2(4)<3m^2+9h^2(2)

 4m^2+4h^2(3)

 16h^2(1)

 △4は

  P0P1=P1P2=P2P3=P3P4=2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0P4=2

であるから

  3m^2+h^2=16h^2

  3m^2+9h^2=4m^2+4h^2

  16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4

===================================

【2】F5 in △3

F5は

  P1P2=P2P3=P3P4=P4P5=√5

  P1P3=P2P4=P3P5=√8

  P1P4=P2P5=3

  P1P5=√8

3m^2+h^2=5

3m^2+9h^2=9

4m^2+4h^2=16h^2=8,h^2=1/2,m^2=3/2

→m^2=3h^2

  P0P1^2=10h^2*

  P0P2^2=18h^2

  P0P3^2=16h^2

  P0P4^2=10h^2*

  P1P2^2=16h^2

  P1P3^2=18h^2

  P1P4^2=16h^2

  P2P3^2=10h^2*

  P2P4^2=16h^2

  P3P4^2=10h^2

となって,√5:√8:3となった.

===================================

【3】G6 in △3

 3m^2+h^2(4)<3m^2+9h^2(2)

 4m^2+4h^2(3),16h^2(1)

G6は

  P2P3=P3P4=P4P5=P5P6=√6

  P2P4=P3P5=P4P6=√10

  P2P5=P3P6=√12

  P2P6=√12

3m^2+h^2=6

4m^2+4h^2=10

3m^2+9h^2=16h^2=12→3m^2=7h^2

h^2=3/4,m^2=7/4

は条件を満たす.

===================================

【4】H7 in △3

 3m^2+h^2(4)<3m^2+9h^2(2)

 4m^2+4h^2(3),16h^2(1)

H7は

  P3P4=P4P5=P5P6=P6P7=√7

  P3P5=P4P6=P5P7=√12

  P3P6=P4P7=√15

  P3P7=4

16h^2=16

3m^2+h^2=7

4m^2+4h^2=12

3m^2+9h^2=15

h^2=1,m^2=2は条件を満たす.

===================================