■サマーヴィルの等面四面体(その558)
P1(0,0,0)
P2(1/√2,√3/√2,0)
P3(2/√2,0,0)
は△2
P1P2=P2P3=√2
P1P3=√2
を満たす.
===================================
【1】△3 in △2
P0(0,0,0)
P1(0,0,3h)
P2(m/√2,m√3/√2,2h)
P3(2m/√2,0,h)
とおくと
P0P1^2=9h^2
P0P2^2=2m^2+4h^2
P0P3^2=2m^2+h^2
P1P2^2=2m^2+h^2
P1P3^2=2m^2+4h^2
P2P3^2=2m^2+h^2
2m^2+h^2(3)<2m^2+4h^2(2)
9h^2(1)
ここで,
9h^2=2m^2+h^2,m^2=4h^2
9h^2=2m^2+h^2=3,h^2=1/3,m^2=4h^2=4/3
ならば△3
P0P1^2=9h^2
P0P2^2=9h^2
P0P3^2=12h^2
P1P2^2=12h^2
P1P3^2=9h^2
P2P3^2=9h^2
===================================
【2】F4 in △2
2m^2+h^2(3)<2m^2+4h^2(2)
9h^2(1)
ここで,
9h^2=2m^2+4h^2=6,
2m^2+h^2=4,h^2=2/3,m^2=5/3
2m^2=5h^2ならば
P0P1^2=9h^2
P0P2^2=6h^2
P0P3^2=9h^2
P1P2^2=9h^2
P1P3^2=6h^2
P2P3^2=6h^2
これでは2:√6になった.
===================================
【3】G5 in △2
2m^2+h^2(3)<2m^2+4h^2(2)
9h^2(1)
G5は
P2P3=P3P4=P4P5=√5
P2P4=P3P5=√8
P2P5=3
ここで,
9h^2=9
2m^2+4h^2=8
2m^2+h^2=5,h^2=1,m^2=2
は条件を満たす.
===================================
【4】H6 in △2
H6は
P3P4=P4P5=P5P6=√6
P3P5=P4P6=√10
P3P6=√12
ここで,
9h^2=12
2m^2+4h^2=10
2m^2+h^2=6,h^2=4/3,m^2=7/3
は条件を満たす.
===================================