■サマーヴィルの等面四面体(その558)

  P1(0,0,0)

  P2(1/√2,√3/√2,0)

  P3(2/√2,0,0)

は△2

  P1P2=P2P3=√2

  P1P3=√2

を満たす.

===================================

【1】△3 in △2

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,2h)

  P3(2m/√2,0,h)

とおくと

  P0P1^2=9h^2

  P0P2^2=2m^2+4h^2

  P0P3^2=2m^2+h^2

  P1P2^2=2m^2+h^2

  P1P3^2=2m^2+4h^2

  P2P3^2=2m^2+h^2

2m^2+h^2(3)<2m^2+4h^2(2)

9h^2(1)

ここで,

  9h^2=2m^2+h^2,m^2=4h^2

  9h^2=2m^2+h^2=3,h^2=1/3,m^2=4h^2=4/3

ならば△3

  P0P1^2=9h^2

  P0P2^2=9h^2

  P0P3^2=12h^2

  P1P2^2=12h^2

  P1P3^2=9h^2

  P2P3^2=9h^2

===================================

【2】F4 in △2

2m^2+h^2(3)<2m^2+4h^2(2)

9h^2(1)

ここで,

  9h^2=2m^2+4h^2=6,

  2m^2+h^2=4,h^2=2/3,m^2=5/3

2m^2=5h^2ならば

  P0P1^2=9h^2

  P0P2^2=6h^2

  P0P3^2=9h^2

  P1P2^2=9h^2

  P1P3^2=6h^2

  P2P3^2=6h^2

これでは2:√6になった.

===================================

【3】G5 in △2

2m^2+h^2(3)<2m^2+4h^2(2)

9h^2(1)

G5は

  P2P3=P3P4=P4P5=√5

  P2P4=P3P5=√8

  P2P5=3

ここで,

  9h^2=9

  2m^2+4h^2=8

  2m^2+h^2=5,h^2=1,m^2=2

は条件を満たす.

===================================

【4】H6 in △2

H6は

  P3P4=P4P5=P5P6=√6

  P3P5=P4P6=√10

  P3P6=√12

ここで,

  9h^2=12

  2m^2+4h^2=10

  2m^2+h^2=6,h^2=4/3,m^2=7/3

は条件を満たす.

===================================