■サマーヴィルの等面四面体(その551)
△3
P0(1,0,√2)
P1(0,0,0)
P2(1,√2,0)
P3(2,0,0)
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
試しに
P0(m,0,m√2,h)
P1(0,0,0,0)
P2(0,0,0,4h)
P3(m,m√2,0,3h)
P4(2m,0,0,2h)
とおくと,
P0P1^2=3m^2+h^2*
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+4h^2
P0P4^2=3m^2+h^2*
P1P2^2=16h^2
P1P3^2=3m^2+9h^2
P1P4^2=4m^2+4h^2
P2P3^2=3m^2+h^2*
P2P4^2=4m^2+4h^2
P3P4^2=3m^2+h^2*
3m^2+h^2(4)<3m^2+9h^2(2)
4m^2+4h^2(3),16h^2(1)
P0(m,0,m√2,h)
P1(0,0,0,0)
P2(0,0,0,4h)
P3(m,m√2,0,2h)
P4(2m,0,0,3h)
とおいたら,
P0P1^2=3m^2+h^2*
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+h^2
P0P4^2=3m^2+4h^2*
P1P2^2=16h^2
P1P3^2=3m^2+4h^2
P1P4^2=4m^2+9h^2
P2P3^2=3m^2+4h^2*
P2P4^2=4m^2+h^2
P3P4^2=3m^2+h^2*
3m^2+h^2(2)<3m^2+4h^2(3)<3m^2+9h^2(1)
4m^2+h^2(2)<4m^2+4h^2(1)
16h^2(1)でNGとなった.hの与え方は重要である.
===================================