■サマーヴィルの等面四面体(その550)
(その372)において,
P1(0,0,0)
P2(m/√2,m√3/√2,0)
P3(2m/√2,0,0)
は
P1P2=P2P3=m√2
P1P3=m√2
を満たす.
P0(0,0,0)
P1(0,0,3h)
P2(m/√2,m√3/√2,2h)
P3(2m/√2,0,h)
とおくと
P0P1^2=9h^2
P0P2^2=2m^2+4h^2
P0P3^2=2m^2+h^2
P1P2^2=2m^2+h^2
P1P3^2=2m^2+4h^2
P2P3^2=2m^2+h^2
2m^2+h^2(3)<2m^2+4h^2(2)
9h^2(1)
P0(0,0,0)
P1(0,0,3h)
P2(m/√2,m√3/√2,h)
P3(2m/√2,0,2h)
とおいたら,
P0P1^2=9h^2
P0P2^2=2m^2+h^2
P0P3^2=2m^2+4h^2
P1P2^2=2m^2+4h^2
P1P3^2=2m^2+h^2
P2P3^2=2m^2+h^2
2m^2+h^2(3)<2m^2+4h^2(2)
9h^2(1)で変わらない.
ここで,
9h^2=2m^2+4h^2=6,
2m^2+h^2=4,h^2=2/3,m^2=5/3
2m^2=5h^2ならば
P0P1^2=9h^2
P0P2^2=6h^2
P0P3^2=9h^2
P1P2^2=9h^2
P1P3^2=6h^2
P2P3^2=6h^2
これでは2:√6になった.
===================================