■サマーヴィルの等面四面体(その543)
これまで確認したことは△nの「最短辺方向」で△n-1柱を充填できることを示したのであるが,第2の方向については求めていない.4次元の場合で再考してみたい.
P0(1,0,√2)
P1(0,0,0)
P2(1,√2,0)
P3(2,0,0)
は△3
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
をみたす.
P0(m,0,m√2,h)
P1(0,0,0,0)
P2(0,0,0,4h)
P3(m,m√2,0,3h)
P4(2m,0,0,2h)
とおくと
P0P1^2=3m^2+h^2
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+4h^2
P0P4^2=3m^2+h^2
P1P2^2=16h^2
P1P3^2=3m^2+9h^2
P1P4^2=4m^2+4h^2
P2P3^2=3m^2+h^2
P2P4^2=4m^2+4h^2
P3P4^2=3m^2+h^2
3m^2+h^2(4)<3m^2+9h^2(2)
4m^2+4h^2(3)
16h^2(1)
===================================
なお,△4は
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
であるから
3m^2+h^2=16h^2
3m^2+9h^2=4m^2+4h^2
3m^2+h^2=16h^2=4
3m^2+9h^2=4m^2+4h^2=6
h^2=1/4,m^2=5/4
これは△3をベースにした柱に△4を充填させることができることを示している.
===================================