■サマーヴィルの等面四面体(その539)

  P1(0,0,0)

  P2(1/√2,√3/√2,0)

  P3(2/√2,0,0)

は△2

  P1P2=P2P3=√2

  P1P3=√2

を満たす.

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,2h)

  P3(2m/√2,0,h)

とおくと

  P0P1^2=9h^2=A

  P0P2^2=2m^2+4h^2=B

  P0P3^2=2m^2+h^2=C

  P1P2^2=2m^2+h^2=A

  P1P3^2=2m^2+4h^2=B

  P2P3^2=2m^2+h^2=A

2m^2+h^2(3)=A?<2m^2+4h^2(2)=B?

9h^2(1)=C?

3次元の場合,3A−3B+C=0

ラベルが異なっているが,

2m^2+h^2(3)=A<2m^2+4h^2(2)=B

9h^2(1)=Cとすると,

3(2m^2+h^2)−3(2m^2+4h^2)+9h^2=0

3A−3B+C=0を満たしている.

===================================

 もしも

2m^2+h^2(3)=C<2m^2+4h^2(2)=B

9h^2(1)=A

とおいた場合は

3・9h^2−3(2m^2+4h^2)+2m^2+h^2≠0

===================================