■サマーヴィルの等面四面体(その538)

P0(√(1/2),0,√(1/2),1,√3)

P1(0,0,0,0,0)

P2(√2,√3,0,0,0)

P3(√8,0,0,0,0)

P4(√(9/2),0,√(9/2),0,0)

P5(√2,0,√2,2,0)

は△5を満たす.

P0(m√(1/2),0,m√(1/2),m,m√3,h)

P1(0,0,0,0,0,0)

P2(0,0,0,0,0,6h)

P3(m√2,m√3,0,0,0,5h)

P4(m√8,0,0,0,0,4h)

P5(m√(9/2),0,m√(9/2),0,0,3h)

P6(m√2,0,m√2,2m,0,2h)

としてみる.

  P0P1^2=5m^2+h^2

  P0P2^2=5m^2+25h^2

  P0P3^2=8m^2+16h^2

  P0P4^2=9m^2+9h^2

  P0P5^2=8m^2+4h^2

  P0P6^2=5m^2+h^2

  P1P2^2=36h^2

  P1P3^2=5m^2+25h^2

  P1P4^2=8m^2+16h^2

  P1P5^2=9m^2+9h^2

  P1P6^2=8m^2+4h^2

  P2P3^2=5m^2+h^2

  P2P4^2=8m^2+4h^2

  P2P5^2=9m^2+9h^2

  P2P6^2=8m^2+16h^2

  P3P4^2=5m^2+h^2

  P3P5^2=8m^2+4h^2

  P3P6^2=9m^2+9h^2

  P4P5^2=5m^2+h^2

  P4P6^2=8m^2+4h^2

  P5P6^2=5m^2+h^2

5m^2+h^2(6)<5m^2+25h^2(2)

8m^2+4h^2(5)<8m^2+16h^2(3)

9m^2+9h^2(4)

36h^2(1)

6次元の場合,6A−15B+20C−15D+6E−F=0

5m^2+h^2=A<5m^2+25h^2=E

8m^2+4h^2=B<8m^2+16h^2=D

9m^2+9h^2=C

36h^2=Fとおくと

6(5m^2+h^2)−15(8m^2+4h^2)+20(9m^2+9h^2)−15(8m^2+16h^2)+6(5m^2+25h^2)−36h^2=0

===================================

5m^2+h^2(6)<5m^2+25h^2(2)

8m^2+4h^2(5)<8m^2+16h^2(3)

9m^2+9h^2(4)

36h^2(1)

△6は

  P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6

  P0P2=P1P3=P2P4=P3P5=P4P6=√10

  P0P3=P1P4=P2P5=P3P6=√12

  P0P4=P1P5=P2P6=√12

  P0P5=P1P6=√10

  P0P6=√6

5m^2+h^2=6,5m^2+25h^2=10

8m^2+4h^2=10,8m^2+16h^2=12

9m^2+9h^2=12

36h^2=6

h^2=1/6,m^2=7/6

===================================