■サマーヴィルの等面四面体(その535)
P1(0,0,0)
P2(1/√2,√3/√2,0)
P3(2/√2,0,0)
は△2
P1P2=P2P3=√2
P1P3=√2
を満たす.
P0(0,0,0)
P1(0,0,3h)
P2(m/√2,m√3/√2,2h)
P3(2m/√2,0,h)
とおくと
P0P1^2=9h^2=A
P0P2^2=2m^2+4h^2=B
P0P3^2=2m^2+h^2=C
P1P2^2=2m^2+h^2=A
P1P3^2=2m^2+4h^2=B
P2P3^2=2m^2+h^2=A
2m^2+h^2(3)=A?<2m^2+4h^2(2)=B?
9h^2(1)=C?
3次元の場合,3A−3B+C=0
ラベルが異なっているが,
2m^2+h^2(3)=A<2m^2+4h^2(2)=B
9h^2(1)=Cとすると,
3(2m^2+h^2)−3(2m^2+4h^2)+9h^2=0
3A−3B+C=0を満たしている.
===================================
なお,
9h^2=2m^2+h^2,m^2=4h^2
ならば△3
P0P1^2=9h^2
P0P2^2=9h^2
P0P3^2=12h^2
P1P2^2=12h^2
P1P3^2=9h^2
P2P3^2=9h^2
△3は
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
9h^2=3,h^2=1/3,m^2=4/3
===================================