■ある無限級数(その127)

[Q] √(1+√(1+√(1+・・・)))=?

[A] 1+x=x^2 → x=(1+√5)/2

[Q] √(2+√(2+√(2+・・・)))=?

[A] 2+x=x^2 → x=2

[Q] √(2+√(2+√(2+・・・)))=?

[A] 3+x=x^2 → x=(1+√13)/2

===================================

[1]ヴィエトの公式

 2/π=√2/2・√(2+√2)/2・√(2+√(2+√2)/2・・・

 √(2+√(2+√(2+・・・)))=2

であることを示している.

===================================

[2]ウォリスの公式

 2/π=Π(4n^2−1)/4n^2

 π/2=Π4n^2/(4n^2−1)=Π2n・2n/(2n−1)(2n+1)

=(2・2/1・3)(4・4/3・5)(6・6/5・7)・・・

===================================