■ある無限級数(その126)
{(1+1/2+1/3+・・・+1/n)−logn}→γ
===================================
[1]オイラーの定数が出現する無限級数
{(1+1/3+1/5+・・・+1/(2n−1)))−1/2・logn}→γ/2+log2
一般に
{(1/((k−1)m+1)+・・・+1/((k−1)m+m−1))−(m−1)/m・logn}→(m−1)γ/m+logm
m=3のとき
{(1+1/2+1/4+1/5+1/7+1/8+1/(3n−2)+1/(3n−1)−2/3・logn}→2γ/3+log3
===================================
一般に
{(1/((k−1)m+1)+・・・+1/((k−1)m+m−1))−(m−1)/km}→logm
m=3のとき
{(1+1/2−2/3+1/4+1/5−2/6+1/7+1/8−2/9+・・・}→log3
m=5のとき
{(1+1/2+1/3+1/4−4/5+1/6+1/7+1/8+1/9−4/10+・・・}→log5
===================================
π=exp(log2+C)
C=1/2・ζ(2)/2+1/2^3・ζ(4)/4+1/2^5・ζ(6)/6+・・・
π=exp(γ+C)
C=1/2・ζ(2)/2+1/2^2・ζ(3)/3+1/2^3・ζ(4)/4+・・・
γ=log2−1/2^2・ζ(3)/3−1/2^4・ζ(5)/5−1/2^6・ζ(7)/7−・・・
===================================