■サマーヴィルの等面四面体(その506)
鏡像体を考えると
A(dcosα,dsinα,b/3)
B(0,0,b)
C(0,0,0)
D(−dcosα,dsinα,2b/3)
とリパラメトライズできる.
AB^2=d^2+4b^2/9=b^2
AC^2=d^2+b^2/9=c^2
AD^2=4d^2cos^2α+b^2/9=9a^2
BC^2=b^2=b^2
BD^2=d^2+b^2/9=c^2
CD^2=d^2+4b^2/9=b^2
が成り立つことが条件である.
d^2=5b^2/9,
2b^2/3=c^2,b^2/c^2=3/2 (NG)
20b^2/9(1−b^2/c^2)+b^2/9=9a^2
−10b^2/9+b^2/9=9a^2,−b^2=9a^2 (NG)
===================================