■サマーヴィルの等面四面体(その506)

 鏡像体を考えると

 A(dcosα,dsinα,b/3)

B(0,0,b)

C(0,0,0)

D(−dcosα,dsinα,2b/3)

とリパラメトライズできる.

AB^2=d^2+4b^2/9=b^2

AC^2=d^2+b^2/9=c^2

AD^2=4d^2cos^2α+b^2/9=9a^2

BC^2=b^2=b^2

BD^2=d^2+b^2/9=c^2

CD^2=d^2+4b^2/9=b^2

が成り立つことが条件である.

d^2=5b^2/9,

2b^2/3=c^2,b^2/c^2=3/2  (NG)

20b^2/9(1−b^2/c^2)+b^2/9=9a^2

−10b^2/9+b^2/9=9a^2,−b^2=9a^2  (NG)

===================================