■√2は無理数であるの裏の裏(その12)
関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示した.
exp(−e)=0.06598803584・・・<1
exp(1/e)=1.44466786100>√2>1
したがって,
x^(x^x^x^x^x^・・・)=3はx^2=3と書き変えることができない.
m≦exp(1/e)に対して
x^m=m,mlogx=logm
したがって,最大値mは
x=exp(1/e)より,m/e=logmを満たすmということになる.
一方,最小値mは
x=exp(−e)より,−me=logmを満たすmではないと思われるが・・・
===================================