■サマーヴィルの等面四面体(その501)
n=6の場合
P0(m√(1/2),0,m√(1/2),m,m√3,h)
P1(0,0,0,0,0,0)
P2(0,0,0,0,0,6h)
P3(m√2,m√3,0,0,0,5h)
P4(m√8,0,0,0,0,4h)
P5(m√(9/2),0,m√(9/2),0,0,3h)
P6(m√2,0,m√2,2m,0,2h)
としてみる.
===================================
P0P1^2=5m^2+h^2
P0P2^2=5m^2+25h^2
P0P3^2=8m^2+16h^2
P0P4^2=9m^2+9h^2
P0P5^2=8m^2+4h^2
P0P6^2=5m^2+h^2
P1P2^2=36h^2
P1P3^2=5m^2+25h^2
P1P4^2=8m^2+16h^2
P1P5^2=9m^2+9h^2
P1P6^2=8m^2+4h^2
P2P3^2=5m^2+h^2
P2P4^2=8m^2+4h^2
P2P5^2=9m^2+9h^2
P2P6^2=8m^2+16h^2
P3P4^2=5m^2+h^2
P3P5^2=8m^2+4h^2
P3P6^2=9m^2+9h^2
P4P5^2=5m^2+h^2
P4P6^2=8m^2+4h^2
P5P6^2=5m^2+h^2
h^2=1/6,m^2=7/6はこれらを満たす.
h^2=1/6,6h=√6 (△6の最短辺)
m^2の値からスケーリングができる.
===================================
[まとめ]nの展開図の断面もスケーリング可能であるが,時間がとれたら再確認しておきたい.とくにn=6の場合はやり直しが必要となる.
===================================