■サマーヴィルの等面四面体(その478)
二面角をδとする.
正八面体では
cosδ=−1/3
1+secδ=1+1/cosδ=−2
−2tanθtan3θ=−1
tan3θ=(3tanθ−tan^3θ)/(1−3tan^2θ)
−2tanθtan3θ=(−6tan^2θ+2tan^4θ)/(1−3tan^2θ)=−1
−6tan^2θ+2tan^4θ=−1+3tan^2θ
2tan^4θ−9tan^2θ+1=0
tan^2θ=(9±√73)/4・・・あわない(その475に一致)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−2tanθtan4θ=1
も計算してみたい.
tan4θ=(4tanθ−4tan^3θ)/(1−6tan^2θ+tan^4θ)
(−8tan^2θ+8tan^4θ)/(1−6tan^2θ+tan^4θ)=−1
(−8tan^2θ+8tan^4θ)=(−1+6tan^2θ−tan^4θ)
9tan^4θ−14tan^2θ+1=0
tan^2θ=(7±√40)/9・・・あわない(その475に一致)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
立方体では
cosδ=0
1+secδ=1+1/cosδ=∞
∞・tanθtan3θ=−1
tanθ=0→θ=0,±π,±2π,±3π,・・・
===================================