■サマーヴィルの等面四面体(その478)

 二面角をδとする.

 正八面体では

  cosδ=−1/3

  1+secδ=1+1/cosδ=−2

  −2tanθtan3θ=−1

  tan3θ=(3tanθ−tan^3θ)/(1−3tan^2θ)

−2tanθtan3θ=(−6tan^2θ+2tan^4θ)/(1−3tan^2θ)=−1

−6tan^2θ+2tan^4θ=−1+3tan^2θ

2tan^4θ−9tan^2θ+1=0

tan^2θ=(9±√73)/4・・・あわない(その475に一致)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  −2tanθtan4θ=1

も計算してみたい.

  tan4θ=(4tanθ−4tan^3θ)/(1−6tan^2θ+tan^4θ)

(−8tan^2θ+8tan^4θ)/(1−6tan^2θ+tan^4θ)=−1

(−8tan^2θ+8tan^4θ)=(−1+6tan^2θ−tan^4θ)

9tan^4θ−14tan^2θ+1=0

tan^2θ=(7±√40)/9・・・あわない(その475に一致)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 立方体では

  cosδ=0

  1+secδ=1+1/cosδ=∞

  ∞・tanθtan3θ=−1

  tanθ=0→θ=0,±π,±2π,±3π,・・・

===================================