■サマーヴィルの等面四面体(その476)

 (その472)をやり直し.コクセター論文覚え書き.展開すると

x[x 1/2 0 0   0 ]−√cw [x 1/2 0 0   0 ]

[1/2 x 1/2 0     ] [1/2 x 1/2 0     ]

[0 1/2 x 1/2    ] [0 1/2 x 1/2    ]

[0 0 1/2 x     ] [0 0 1/2 x     ]

[        x 1/2 ] [        x 0 ]

[0       1/2 x ] [0       1/2 √cw]

   (n−1行)            (n−1行)

x[x 1/2 0 0   0 ]−cw [x 1/2 0 0  ]

[1/2 x 1/2 0     ] [1/2 x 1/2 0   ]

[0 1/2 x 1/2    ] [0 1/2 x 1/2 ]

[0 0 1/2 x     ] [0 0 1/2 x 1/2]

[        x 1/2 ] [0     1/2 x ]

[0       1/2 x ]

   (n−1行)            (n−2行)

2^n-1をかけると

x2^n-1[x 1/2 0 0   0 ]−2cw2^n-2[x 1/2 0 0  ]

   [1/2 x 1/2 0     ]      [1/2 x 1/2 0   ]

   [0 1/2 x 1/2    ]     [0 1/2 x 1/2 ]

   [0 0 1/2 x     ]     [0 0 1/2 x 1/2]

   [        x 1/2 ]     [0     1/2 x ]

   [0       1/2 x ]

=xsinnθ/sinθ−2cwsin(n−1)θ/sinθ

===================================

 cosθsinnθ−2cos^2π/w・sin(n−1)θ

=cosθsinnθ−2cos^2π/w・{sinnθcosθ−cosnnθsinθ

=cosθsinnθ(1−2cos^2π/w)+2cos^2π/w・cosnnθsinθ

=−cosθsinnθ(cos2π/w)+(1+cos2π/w)・cosnnθsinθ

===================================