■サマーヴィルの等面四面体(その476)
(その472)をやり直し.コクセター論文覚え書き.展開すると
x[x 1/2 0 0 0 ]−√cw [x 1/2 0 0 0 ]
[1/2 x 1/2 0 ] [1/2 x 1/2 0 ]
[0 1/2 x 1/2 ] [0 1/2 x 1/2 ]
[0 0 1/2 x ] [0 0 1/2 x ]
[ x 1/2 ] [ x 0 ]
[0 1/2 x ] [0 1/2 √cw]
(n−1行) (n−1行)
x[x 1/2 0 0 0 ]−cw [x 1/2 0 0 ]
[1/2 x 1/2 0 ] [1/2 x 1/2 0 ]
[0 1/2 x 1/2 ] [0 1/2 x 1/2 ]
[0 0 1/2 x ] [0 0 1/2 x 1/2]
[ x 1/2 ] [0 1/2 x ]
[0 1/2 x ]
(n−1行) (n−2行)
2^n-1をかけると
x2^n-1[x 1/2 0 0 0 ]−2cw2^n-2[x 1/2 0 0 ]
[1/2 x 1/2 0 ] [1/2 x 1/2 0 ]
[0 1/2 x 1/2 ] [0 1/2 x 1/2 ]
[0 0 1/2 x ] [0 0 1/2 x 1/2]
[ x 1/2 ] [0 1/2 x ]
[0 1/2 x ]
=xsinnθ/sinθ−2cwsin(n−1)θ/sinθ
===================================
cosθsinnθ−2cos^2π/w・sin(n−1)θ
=cosθsinnθ−2cos^2π/w・{sinnθcosθ−cosnnθsinθ
=cosθsinnθ(1−2cos^2π/w)+2cos^2π/w・cosnnθsinθ
=−cosθsinnθ(cos2π/w)+(1+cos2π/w)・cosnnθsinθ
===================================