■サマーヴィルの等面四面体(その474)

 二面角をδとする.

 正八面体では

  cosδ=−1/3

  1+secδ=1+1/cosδ=−2

  −2tanθtan3θ=1

  tan3θ=(3tanθ−tan^3θ)/(1−3tan^2θ)

−2tanθtan3θ=(−6tan^2θ+2tan^4θ)/(1−3tan^2θ)=1

−6tan^2θ+2tan^4θ=1−3tan^2θ

2tan^4θ−3tan^2θ−1=0

tan^2θ=(3±√17)/4・・・あわない

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  −2tanθtan4θ=1

も計算してみたい.

  tan4θ=(4tanθ−4tan^3θ)/(1−6tan^2θ+tan^4θ)

(−8tan^2θ+8tan^4θ)/(1−6tan^2θ+tan^4θ)=1

(−8tan^2θ+8tan^4θ)=(1−6tan^2θ+tan^4θ)

7tan^4θ−2tan^2θ−1=0

tan^2θ=(−1±√8)/7・・・あわない

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 立方体では

  cosδ=0

  1+secδ=1+1/cosδ=∞

  ∞・tanθtan3θ=1

  tanθ=0→θ=0,±π,±2π,±3π,・・・

===================================