■サマーヴィルの等面四面体(その474)
二面角をδとする.
正八面体では
cosδ=−1/3
1+secδ=1+1/cosδ=−2
−2tanθtan3θ=1
tan3θ=(3tanθ−tan^3θ)/(1−3tan^2θ)
−2tanθtan3θ=(−6tan^2θ+2tan^4θ)/(1−3tan^2θ)=1
−6tan^2θ+2tan^4θ=1−3tan^2θ
2tan^4θ−3tan^2θ−1=0
tan^2θ=(3±√17)/4・・・あわない
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−2tanθtan4θ=1
も計算してみたい.
tan4θ=(4tanθ−4tan^3θ)/(1−6tan^2θ+tan^4θ)
(−8tan^2θ+8tan^4θ)/(1−6tan^2θ+tan^4θ)=1
(−8tan^2θ+8tan^4θ)=(1−6tan^2θ+tan^4θ)
7tan^4θ−2tan^2θ−1=0
tan^2θ=(−1±√8)/7・・・あわない
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
立方体では
cosδ=0
1+secδ=1+1/cosδ=∞
∞・tanθtan3θ=1
tanθ=0→θ=0,±π,±2π,±3π,・・・
===================================