■連続数のピタゴラス三角形(その25)
m^2=2n^2+2n+1が成立すれば,
(2m+3n+1)^2+(2m+3n+2)^2=(3m+4n+2)^2
も成立する.
(証)
左辺=4m^2+9n^2+1+12mn+4m+6n+(4m^2+9n^2+4+12mn+8m+12n)
=8m^2+18n^2+5+24mn+12m+18n
右辺=9m^2+16n^2+4+24mn+12m+16n
左辺−右辺=−m^2+2n^2+1+2n=0
これ以外に解はないのだろうか?
===================================
(2m+3n+a)^2+(2m+3n+a+1)^2=(3m+4n+b)^2
左辺=(2m+3n)^2+2a(2m+3n)+a^2+(2m+3n)^2+2(a+1)(2m+3n)+(a+1)^2
=2(2m+3n)^2+(4a+2)(2m+3n)+2a^2+2a+1
右辺=(3m+4n)^2+2b(3m+4n)+b^2
左辺−右辺=−m^2+2n^2+(8a+4−6b)m+(12a+6−8b)n+2a^2+2a+1−b^2
=(8a+4−6b)m+(12a+4−8b)n+2a^2+2a−b^2
8a−6b=−4
12a−8b=−4
24a−18b=−12
24a−16b=−8
−2b=−4,b=2,a=1
2a^2+2a−b^2=0 (OK)
(2m+3n+1)^2+(2m+3n+2)^2=(3m+4n+2)^2
これ以外に解はない.
===================================