■連続数のピタゴラス三角形(その19)
m^2=2n^2+2n+1が成立すれば,
(m+n+1)^2+(m+n+2)^2=(m+2n+2)
も成立するか?
(証)
左辺=m^2+n^2+1+2mn+2m+2n+(m^2+n^2+4+2mn+4m+4n)
=2m^2+2n^2+5+4mn+6m+6n
右辺=m^2+4n^2+4+4mn+4m+8n
左辺−右辺=m^2−2n^2+1+2m−2n≠0
===================================
m^2=2n^2+2n+1が成立すれば,
(m+n)^2+(m+n+1)^2=(m+2n+1)
も成立するか?
(証)
左辺=m^2+n^2+2mn+(m^2+n^2+1+2mn+2m+2n)
=2m^2+2n^2+1+4mn+4m+4n
右辺=m^2+4n^2+1+4mn+2m+4n
左辺−右辺=m^2−2n^2+2m≠0
===================================
m^2=2n^2+2n+1が成立すれば,
(m+n)^2+(m+n+1)^2=(m+2n+2)
も成立するか?
(証)
左辺=m^2+n^2+2mn+(m^2+n^2+1+2mn+2m+2n)
=2m^2+2n^2+1+4mn+4m+4n
右辺=m^2+4n^2+4+4mn+4m+4n
左辺−右辺=m^2−2n^2−3≠0
===================================