■連続数のピタゴラス三角形(その9)
n^3+(n+1)^3=m^2
すなわち,連続した立方数の和に等しい平方数は(n,m)=(1,3)ただひとつである.
それでは,連続した平方数の和に等しい平方数はどうだろうか?
n^2+(n+1)^2=m^2
===================================
m^2=2n^2+2n+1が成立すれば,
(2m+3n+1)^2+(2m+3n+2)^2=(3m+4n+2)
も成立する.
(証)
左辺=4m^2+9n^2+1+12mn+4m+6n+(4m^2+9n^2+4+12mn+8m+12n)
=8m^2+18n^2+5+24mn+12m+18n
右辺=9m^2+16n^2+4+24mn+12m+16n
左辺−右辺=−m^2+2n^2+1+2n=0
したがって,(n,m)がひとつ得られれば,芋づる式に無数に解が得られることになる.
20^2+21^2=29^2
119^2+120^2=169^2
696^2+697^2=985^2
4059^2+4060^2=5741^2
===================================