■マルコフ方程式の話(その21)

 (2^2−1)(4^2−1)=(7^2−4)

 (3^2−1)(5^2−1)=(14^2−4)

 (4^2−1)(6^2−1)=(23^2−4)

であるか,さらに

 (3^2−1)(5^2−1)=(14^2−4)

 (4^2−1)(6^2−1)=(23^2−4)

 (5^2−1)(7^2−1)=(349^2−4)

を組み合わせると,

 (3^2−1)(5^2−1)−(2^2−1)(4^2−1)=14^2−7^2

 (4^2−1)(6^2−1)−(3^2−1)(5^2−1)=23^2−14^2

 (5^2−1)(7^2−1)−(4^2−1)(6^2−1)=34^2−23^2

===================================