■マルコフ方程式の話(その21)
(2^2−1)(4^2−1)=(7^2−4)
(3^2−1)(5^2−1)=(14^2−4)
(4^2−1)(6^2−1)=(23^2−4)
であるか,さらに
(3^2−1)(5^2−1)=(14^2−4)
(4^2−1)(6^2−1)=(23^2−4)
(5^2−1)(7^2−1)=(349^2−4)
を組み合わせると,
(3^2−1)(5^2−1)−(2^2−1)(4^2−1)=14^2−7^2
(4^2−1)(6^2−1)−(3^2−1)(5^2−1)=23^2−14^2
(5^2−1)(7^2−1)−(4^2−1)(6^2−1)=34^2−23^2
===================================