■マルコフ方程式の話(その18)
恒等式
(n^2−1)((n+1)^2−1)=((n^2+n−1)^2−1)
が得られた.
===================================
(2^2−1)(3^2−1)=(5^2−1)
(3^2−1)(4^2−1)=(11^2−1)
(4^2−1)(5^2−1)=(19^2−1)
であるか,さらに
(5^2−1)(6^2−1)=(29^2−1)
(11^2−1)(12^2−1)=(131^2−1)
(19^2−1)(20^2−1)=(379^2−1)
を組み合わせると,
(2^2−1)(3^2−1)(6^2−1)=(29^2−1)
(3^2−1)(4^2−1)(12^2−1)=(131^2−1)
(4^2−1)(5^2−1)(20^2−1)=(379^2−1)
===================================