■マルコフ方程式の話(その18)

 恒等式

 (n^2−1)((n+1)^2−1)=((n^2+n−1)^2−1)

が得られた.

===================================

 (2^2−1)(3^2−1)=(5^2−1)

 (3^2−1)(4^2−1)=(11^2−1)

 (4^2−1)(5^2−1)=(19^2−1)

であるか,さらに

 (5^2−1)(6^2−1)=(29^2−1)

 (11^2−1)(12^2−1)=(131^2−1)

 (19^2−1)(20^2−1)=(379^2−1)

を組み合わせると,

 (2^2−1)(3^2−1)(6^2−1)=(29^2−1)

 (3^2−1)(4^2−1)(12^2−1)=(131^2−1)

 (4^2−1)(5^2−1)(20^2−1)=(379^2−1)

===================================