■マルコフ方程式の話(その15)
x^2+y^2+z^2=3xyz+4/9
をzについて解くと,
z^2−3xyz+x^2+y^2−4/9=0
z=1/2{3xy±√(9x^2y^2−4x^2−4y^2+16/9)}
z={3xy/2±√(9x^2y^2/4−x^2−y^2+4/9)}
z={3xy/2±√(9x^2y^2/4−x^2−y^2+4/9)}
z={3xy/2±√(3x^2/2−2/3)(3y^2/2−2/3)}
3z/2=9xy/4±√(9x^2/4−1)(9y^2/4−1)}
z^2=9x^2y^2/4+9x^2y^2/4−x^2−y^2+4/9)
±3xy√(3x^2/2−2/3)(3y^2/2−2/3)}
z^2=9x^2y^2/4+9x^2y^2/4−x^2−y^2+4/9)
±2√(9x^2y^2/4−y^2)(9x^2y^2/2−x^2)}
9z^2/4−1=81x^2y^2/8−9x^2/4−9y^2/4
±2√(81x^2y^2/16−9y^2/4)(81x^2y^2/16−9x^2/4)}
したがって,
√(9z^2/4−1)=√(81x^2y^2/16−9y^2/4)+√(81x^2y^2/16−9x^2/4)}
となって,2重混号が外れる.
3z/2=9xy/4±√(9x^2/4−1)(9y^2/4−1)}
√(9z^2/4−1)=√(81x^2y^2/16−9y^2/4)±√(81x^2y^2/16−9x^2/4)}
f(x)+f(y)=log(9xy/4+√(81x^2y^2/16−9y^2/4)+√(81x^2y^2/16−9x^2/4)+√(81x^2y^2/16−9x^2/4−9y^2/4+1)
f(z)=log(3z/2+√(9z^2/4−1))
より,直接f(x)+f(y)=f(z)が示されたことになる.やれやれ.
===================================