■マルコフ方程式の話(その14)
arccosh(x)=log(x+√(x^2−1))
=log2x−Σ(2n−1)!!/2n(2n)!!・1/x^2n
z^2−3xyz+x^2+y^2−4/9=0
z=1/2{3xy±√(9x^2y^2−4x^2−4y^2+16/9)}
===================================
arccosh(3x/2)=log(3x)−Σ(2n−1)!!/2n(2n)!!・1/(3x/2)^2n
arccosh(3y/2)=log(3y)−Σ(2n−1)!!/2n(2n)!!・1/(3y/2)^2n
arccosh(3z/2)=log(3z)−Σ(2n−1)!!/2n(2n)!!・1/(3z/2)^2n
f(x)+f(y)=log(9xy)−Σ(2n−1)!!/2n(2n)!!・1/(3x/2)^2n−Σ(2n−1)!!/2n(2n)!!・1/(3x/2)^2n
=log(9xy)−Σ(2n−1)!!/2n(2n)!!{1/(3x/2)^2n+1/(3y/2)^2n}
=log(9xy)−Σ(2n−1)!!/2n(2n)!!{(3x/2)^2n+(3y/2)^2n}/(9xy/4)^2n
f(z)=log(3z)−Σ(2n−1)!!/2n(2n)!!・1/(3z/2)^2n
z=1/2{3xy±√(9x^2y^2−4x^2−4y^2+16/9)}
を代入しても,直接f(x)+f(y)=f(z)を示すことは難しいようだ.
===================================