■マルコフ方程式の話(その14)

 arccosh(x)=log(x+√(x^2−1))

=log2x−Σ(2n−1)!!/2n(2n)!!・1/x^2n

  z^2−3xyz+x^2+y^2−4/9=0

  z=1/2{3xy±√(9x^2y^2−4x^2−4y^2+16/9)}

===================================

 arccosh(3x/2)=log(3x)−Σ(2n−1)!!/2n(2n)!!・1/(3x/2)^2n

 arccosh(3y/2)=log(3y)−Σ(2n−1)!!/2n(2n)!!・1/(3y/2)^2n

 arccosh(3z/2)=log(3z)−Σ(2n−1)!!/2n(2n)!!・1/(3z/2)^2n

f(x)+f(y)=log(9xy)−Σ(2n−1)!!/2n(2n)!!・1/(3x/2)^2n−Σ(2n−1)!!/2n(2n)!!・1/(3x/2)^2n

=log(9xy)−Σ(2n−1)!!/2n(2n)!!{1/(3x/2)^2n+1/(3y/2)^2n}

=log(9xy)−Σ(2n−1)!!/2n(2n)!!{(3x/2)^2n+(3y/2)^2n}/(9xy/4)^2n

f(z)=log(3z)−Σ(2n−1)!!/2n(2n)!!・1/(3z/2)^2n

  z=1/2{3xy±√(9x^2y^2−4x^2−4y^2+16/9)}

を代入しても,直接f(x)+f(y)=f(z)を示すことは難しいようだ.

===================================