■サマーヴィルの等面四面体(その445)
分数,たとえば,
x1−1/(x2−1/x3)
=x1−x3/(x2x3−1)
=(x1x2x3−x1−x3)/(x2x3−1)
であるが,連分数とは,これを
x1−1/x2−1/x3
と記述している.
と記述している.
1−cp/1−cq/1−crでは
=1−cp/(1−cq/(1−cr))
=1−cp(1−cr)/(1−cr−cq)
={1−cr−cq−cp(1−cr)}/(1−cr−cq)
cp=1/4,cq=1/4とおくと
={4−4cr−1−(1−cr)}/(4−4cr−1)
=(2−3cr)/(3−4cr)
===================================
cr=cos^2π/r=2/3のとき,
1−cp/1−cq/1−cr=0
π/r=arccos(√(2/3))
r=π/arccos(√(2/3))=5.1043
===================================
1−cp/1−cq/1−cr/1−cs
では
=1−cp/1−cq/(1−cr/(1−cs))
=1−cp/1−cq(1−cs)/(1−cs−cr)
=1−cp(1−cs−cr)/{(1−cs−cr)−cq(1−cs)}
={{(1−cs−cr)−cq(1−cs)}−cp(1−cs−cr)}/{(1−cs−cr)−cq(1−cs)}
cp=1/4,cq=1/4,cr=1/4とおくと
={{16−16cs−4−(4−4cs))}−(4−4cs−1)}/{(16−16cs−4)−(4−4cs)}
=(5−8cs)/(8−12cs0
===================================
cs=cos^2π/s=5/8のとき,
1−cp/1−cq/1−cr/1−cs=0
π/s=arccos(√(5/8))
s=π/arccos(√(5/8))=4.76679
===================================