■サマーヴィルの等面四面体(その445)

 分数,たとえば,

  x1−1/(x2−1/x3)

=x1−x3/(x2x3−1)

=(x1x2x3−x1−x3)/(x2x3−1)

であるが,連分数とは,これを

  x1−1/x2−1/x3

と記述している.

と記述している.

  1−cp/1−cq/1−crでは

=1−cp/(1−cq/(1−cr))

=1−cp(1−cr)/(1−cr−cq)

={1−cr−cq−cp(1−cr)}/(1−cr−cq)

 cp=1/4,cq=1/4とおくと

={4−4cr−1−(1−cr)}/(4−4cr−1)

=(2−3cr)/(3−4cr)

===================================

 cr=cos^2π/r=2/3のとき,

  1−cp/1−cq/1−cr=0

  π/r=arccos(√(2/3))

  r=π/arccos(√(2/3))=5.1043

===================================

  1−cp/1−cq/1−cr/1−cs

では

=1−cp/1−cq/(1−cr/(1−cs))

=1−cp/1−cq(1−cs)/(1−cs−cr)

=1−cp(1−cs−cr)/{(1−cs−cr)−cq(1−cs)}

={{(1−cs−cr)−cq(1−cs)}−cp(1−cs−cr)}/{(1−cs−cr)−cq(1−cs)}

 cp=1/4,cq=1/4,cr=1/4とおくと

={{16−16cs−4−(4−4cs))}−(4−4cs−1)}/{(16−16cs−4)−(4−4cs)}

=(5−8cs)/(8−12cs0

===================================

 cs=cos^2π/s=5/8のとき,

  1−cp/1−cq/1−cr/1−cs=0

  π/s=arccos(√(5/8))

  s=π/arccos(√(5/8))=4.76679

===================================