■サマーヴィルの等面四面体(その381)

△4

  P0(1/2,(√5)/2,0,(√10)/2)

  P1(0,0,0,0)

  P2(2,0,0,0)

  P3(3/2,(√5)/2,(√10)/2,0)

  P4(1,√5,0,0)

  P0(m/2,m√5/2,0,m√10/2,h)

  P1(0,0,0,0,0)

  P2(0,0,0,0,5h)

  P3(2m,0,0,0,4h)

  P4(3m/2,m√5/2,m√10/2,0,3h)

  P5(m,m√5,0,0,2h)

としてみる.

===================================

  P0P1^2=4m^2+h^2

  P0P2^2=4m^2+16h^2

  P0P3^2=6m^2+9h^2

  P0P4^2=6m^2+4h^2

  P0P5^2=4m^2+h^2

  P1P2^2=25h^2

  P1P3^2=4m^2+16h^2

  P1P4^2=6m^2+9h^2

  P1P5^2=6m^2+4h^2

  P2P3^2=4m^2+h^2

  P2P4^2=6m^2+4h^2

  P2P5^2=6m^2+9h^2

  P3P4^2=4m^2+h^2

  P3P5^2=6m^2+4h^2

  P4P5^2=4m^2+h^2

4m^2+h^2(5)<4m^2+16h^2(2)

6m^2+4h^2(4)<6m^2+9h^2(3)

25h^2(1)

G7は

  P2P3=P3P4=P4P5=P5P6=P6P7=√7

  P2P4=P3P5=P4P6=P5P7=√12

  P2P5=P3P6=P4P7=√15

  P2P6=P3P7=4

  P2P7=√15

4m^2+h^2=7

6m^2+4h^2=12

6m^2+9h^2=25h^2=15

4m^2+16h^2=16

h^2=3/5,m^2=8/5

===================================