■サマーヴィルの等面四面体(その373)

△3

  P0(1,0,√2)

  P1(0,0,0)

  P2(1,√2,0)

  P3(2,0,0)

  P0P1=P1P2=P2P3=√3

  P0P2=P1P3=2

  P0P3=√3

 試しに

  P0(m,0,m√2,h)

  P1(0,0,0,0)

  P2(0,0,0,4h)

  P3(m,m√2,0,3h)

  P4(2m,0,0,2h)

とおくと,

  P0P1^2=3m^2+h^2*

  P0P2^2=3m^2+9h^2

  P0P3^2=4m^2+4h^2

  P0P4^2=3m^2+h^2*

  P1P2^2=16h^2

  P1P3^2=3m^2+9h^2

  P1P4^2=4m^2+4h^2

  P2P3^2=3m^2+h^2*

  P2P4^2=4m^2+4h^2

  P3P4^2=3m^2+h^2*

 3m^2+h^2(4)<3m^2+9h^2(2)

 4m^2+4h^2(3),16h^2(1)

F5は

  P1P2=P2P3=P3P4=P4P5=√5

  P1P3=P2P4=P3P5=√8

  P1P4=P2P5=3

  P1P5=√8

3m^2+h^2=5

3m^2+9h^2=9

4m^2+4h^2=16h^2→m^2=3h^2

  P0P1^2=10h^2*

  P0P2^2=18h^2

  P0P3^2=16h^2

  P0P4^2=10h^2*

  P1P2^2=16h^2

  P1P3^2=18h^2

  P1P4^2=16h^2

  P2P3^2=10h^2*

  P2P4^2=16h^2

  P3P4^2=10h^2

となって,√5:√8:3となった.

===================================