■サマーヴィルの等面四面体(その372)

  P1(0,0,0)

  P2(1/√2,√3/√2,0)

  P3(2/√2,0,0)

  P1P2=P2P3=√2

  P1P3=√2

を満たす.=△2

  P1(0,0,0)

  P2(m/√2,m√3/√2,0)

  P3(2m/√2,0,0)

  P1P2=P2P3=m√2

  P1P3=m√2

を満たす.

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,2h)

  P3(2m/√2,0,h)

とおくと

  P0P1^2=9h^2

  P0P2^2=2m^2+4h^2

  P0P3^2=2m^2+h^2

  P1P2^2=2m^2+h^2

  P1P3^2=2m^2+h^2

  P2P3^2=2m^2+h^2

F4は

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

であるからNG.

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,h)

  P3(2m/√2,0,2h)

  P0P1^2=9h^2

  P0P2^2=2m^2+h^2

  P0P3^2=2m^2+4h^2

  P1P2^2=2m^2+4h^2

  P1P3^2=2m^2+h^2

  P2P3^2=2m^2+h^2

2m^2+h^2(3)<2m^2+4h^2(2)

9h^2(1)

ここで,

  9h^2=2m^2+4h^2,2m^2=5h^2

ならば

  P0P1^2=9h^2

  P0P2^2=6h^2

  P0P3^2=9h^2

  P1P2^2=9h^2

  P1P3^2=6h^2

  P2P3^2=6h^2

これでは2:√6になった.

===================================