■tannθ=ntanθ(その18)

  y^2−8x^2=y^2−2(2x)^2=1=p^2−2q^2

  α=3+2√2,β=3−2√2

  xn =1/2(α^n+β^n)

  yn =1/2√2(α^n−β^n)

  p=1/2(α^n+β^n)

1/32{(17+12√2)^n+(17−12√2)^n−2}

に食い違いがあるように見えるが,x^2−2y^2=1において,

(3+2√2)^n

n=1:(3,2)

n=2:(17,12)

n=3:(99,70)

n=4:(577,408)

n=5:(3363,2378)

となっているというわけである.

===================================