■正五角形と正十七角形(その32)

[2]sin(2π/13)+sin(6π/13)+sin(18π/13)=(26−6√13)^1/2/4

も,岩波「数学公式」の正弦・余弦の和公式の延長線上にあるに違いない.

n    [2n^2/13](mod13)

1 0 2

2 0 8

3 1 5

4 2 6

5 3 11

6 5 7

7 7 7

8 9 11

9 12 6

10 15 5

11 18 8

12 22 2

===================================

[1]sin2π/13+sin8π/13+sin18π/13+sin32π/13+sin50π/13+sin72π/13+sin98π/13+sin128π/13+sin162π/13+sin200π/13+sin242π/13+sin288π/13=0

sin2π/13+sin5π/13−sin5π/13+sin6π/13−sin2π/13−sin6π/13−sin6π/13−sin2π/13+sin6π/13−sin5π/13+sin5π/13+sin2π/13=0

 これでは

sin(2π/13)+sin(6π/13)+sin(18π/13)=?である.

[2]cos2π/13+cos8π/13+cos18π/13+cos32π/13+cos50π/13+cos72π/13+cos98π/13+cos128π/13+cos162π/13+cos200π/13+cos242π/13+cos288π/13=√13−1

cos2π/13−cos5π/13−cos5π/13+cos6π/13+cos2π/13+cos6π/13+cos6π/13+cos2π/13+cos6π/13−cos5π/13−cos5π/13+cos2π/13=√13−1

4cos2π/13−4cos5π/13+4cos6π/13=√13−1

===================================

[雑感]延長線上のものではなかったが,またまた予期せぬ値となった.

===================================